ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ ИНТЕРКАЛАТОВ

Чудинов Е.А., Кедринский И.А., Шишко В.С.

ГОУ ВПО «Сибирский государственный технологический университет», Красноярск, *Poccus*, *e-mail:* <u>five_project@mail.ru</u>

Рассмотрены особенности поведения графитовых электродов с упорядоченной системой слоёв как многофазных электродов. Показана возможность существования, по крайней мере, пяти ступеней заполнения кристаллической решетки графита интеркалированным литием, различающихся свободной энергией образования и электродным потенциалом протекания электрохимических реакций интеркалации-деинтеркалации. Рассчитана ожидаемая зависимость «степень интеркалации – потенциал графита».

Ключевые слова: потенциал, термодинамика, электрод, литий-ионный аккумулятор.

ELECTRODE POTENTIALS OF INTERCALATES

Chudinov E.A., Kedrinsky I.A., Shishko V.S.

The Siberian state technological university, Krasnoyarsk, Russia, e-mail: five_project@mail.ru

The features of a behaviour of graphite electrodes with an ordered system of stratums as multiphase electrodes are considered. The possibility of existence at least of five stages of filling of a crystalline lattice of graphite intercalated by a lithium distinguishing in free energy of formation and an electrode potential of a course of electrochemical responses intercalation-deintercalation is shown. The expected dependence «a degree intercalation - potential of graphite » is designed.

Key words: potential, thermodynamics, electrode, lithium-ion battery.

Введение

Согласно классическим представлениям теоретической электрохимии [1], гальванипотенциал границы раздела металл/металл является постоянной величиной. Гальванипотенциал границы раздела металл/полупроводник зависит от концентрации электронов в полупроводнике. Однако ЭДС электрохимической цепи «электрод сравнения – полупроводниковый электрод» от концентрации электронов в полупроводнике не зависит [5]. Представляет интерес рассмотреть такую зависимость для интеркалатного электрода из углеродного материала.

Многие слоистые кристаллические структуры, в том числе графит, имеют прочную связь атомов внутри слоёв и слабую связь между слоями, обеспечиваемую ван-дерваальсовыми силами. Такая особенность строения позволяет внедрить между слоями исходного материала, называемого также веществом – «хозяином», дополнительные атомы, которые являются «гостями» по отношению к хозяину. Процесс образования подобного соединения (внедрения) в настоящее время называют интеркалацией от латинского intercalarius [7] или intercalatus [2] – вставной, добавочный. Принимая <H> для обозначения «хозяина» (от host – хозяин), рассматриваемый нами тип интеркалатного электрода (ИЭ) уместно обозначить <HLi>, показывая наличие в структуре хозяина <H> «гостя», атома Li. Учитывая, что содержание лития в материале хозяина неопределённо и переменно, правильнее обозначение <HLi_x>. Атом Li в структуре ИЭ представлен ионом лития и электроном, так что можно записать также <HLi_x> \equiv <HLi⁺_xe⁻_x>. Условие равновесия электронов на границе раздела <HLi_x>/Li:

$$\Delta \phi_{<\rm HLix>}^{\rm Li} = \phi^{\rm Li} - \phi^{<\rm HLix>} = 1/eN(\mu_e^{\rm Li} - \mu_e^{<\rm HLix>}).$$
(1)

Поскольку химический потенциал электронов в металле постоянен, а для хозяина справедливо выражение: $\mu_e^{\langle HLix \rangle} = 1/eN$ ($\mu_e^{0\langle HLix \rangle} + RT \ln a_e^{\langle HLix \rangle}$), то гальвани-потенциал для границы раздела $\langle HLi_x \rangle$ /Li равен $\Delta \phi_{\langle HLix \rangle}^{Li} = const - kT/e \ln a_e^{\langle HLix \rangle}$, при этом const = $1/eN(\mu_e^{Li} - \mu_e^{0\langle HLix \rangle})$. Из этого видно, что гальвани-потенциал границы раздела ИЭ/ литий аналогичен гальвани-потенциалу для полупроводников, т.е. зависит от концентрации электронов.

Рассмотрим электрохимическую цепь «литий – ИЭ», представляющую собой потенциал интеркалатного электрода относительно литиевого электрода сравнения: Li $|AДP,Li^+| < HLi^+_x e > |Li$. Для упрощения записей введём обозначение $<H> \equiv < HLi^+_x e >$.

Разность потенциалов этой цепи складывается из трёх гальвани-потенциалов, отвечающих трём границам раздела, для которых существует равновесие: Li \leftrightarrow Li⁺(p) + e (Li); Li⁺(p) \leftrightarrow Li⁺(<H>); e (<H>) \leftrightarrow e (Li), откуда гальвани-потенциал каждой фазовой границы равен:

$$\begin{split} \Delta \phi_{Li}{}^{p} &= \phi^{p} - \phi^{Li} = 1/eN \left(-\mu_{Li+}{}^{p} - \mu_{e}{}^{Li} \right); \\ \Delta \phi_{p}{}^{} &= \phi^{} - \phi^{p} = 1/eN \left(\mu_{Li+}{}^{p} - \mu_{Li+}{}^{} \right); \\ \Delta \phi_{}{}^{Li} &= \phi^{Li} - \phi^{} = 1/eN \left(\mu_{e}{}^{Li} - \mu_{e}{}^{} \right). \end{split}$$
(2)

Подставив уравнения (2) в уравнение: $E = \Delta \phi_{Li}^{P} + \Delta \phi_{P}^{<H>} + \Delta \phi_{<H>}^{Li}$ и проведя сокращения, получаем:

$$E = 1/eN (- \mu_{Li^+}^{} - \mu_e^{}) .$$
 (3)

Для ионов лития и электронов:

$$- \mu_{Li+}^{} = - (\mu_{Li+}^{0}^{} + kNT \ln a_{Li+}^{}), \ rge - \mu_{Li+}^{0}^{} = const1; - \mu_{e}^{} = - (\mu_{e}^{0}^{} + kNT \ln a_{e}^{}), \ rge - \mu_{e}^{0}^{} = const2.$$

Приняв 1/eN (cost1 + const2) = E^0 , имеем:

$$E = E^{0} - kT/e \ln \left(a_{Li^{+}}^{} * a_{e}^{} \right).$$
(4)

Из уравнения (8) следует, что ЭДС электрохимической цепи «Li⁺/Li – ИЭ» зависит *и от концентрации электронов, и от концентрации ионов* в материале интеркалатного электрода. В этом состоит коренное отличие интеркалатных электродов от электродов всех других типов, в том числе и амальгамных. Уравнение (4) представляет собой уравнение

Нернста для потенциала ИЭ. Аналогичные результаты получены в [9]. Однако они представлены в виде, затрудняющем расчёт. Для анализа удобнее уравнение (4) представить в виде:

$$E = E^{0} - kT/e \ln a_{Li^{+}}^{\langle H \rangle} - kT/e \ln a_{e}^{\langle H \rangle} .$$
 (5)

Концентрация электронов в металлах составляет ~ $1 \cdot 10^{28}$ м⁻³, в полупроводниках изменяется в широких пределах от $1 \cdot 10^{19}$ до $1 \cdot 10^{25}$ м⁻³ [5].

Используя теоретическую плотность графита 2,267 г/см³ [3], можно представить концентрацию электронов в графите в виде количества частиц на грамм вещества. В 1 г незаряженного графита может находиться от $1 \cdot 10^{13}/2,267 = 4,41 \cdot 10^{12}$ до $1 \cdot 10^{19}/2,267 = 4,41 \cdot 10^{18}$ е/г, т.е. для степени внедрения x = 1 в грамм графита интеркалирует $8 \cdot 10^{21}$ атомов лития.

Заряд электрона е = $1,6 \cdot 10^{-19}$ Кулон, и при прохождении 1 Кулона (1 Ac) переносится $6,25 \cdot 10^{18}$ электронов. Отсюда при расходовании в процессе заряда или разряда графитового электрода 1 мАч в материал электрода переносится по $2,25 \cdot 10^{19}$ заряженных частиц, равно электронов и ионов лития.

Рассмотрим зависимость потенциала ИЭ от концентрации электронов и ионов. Используем уравнение (3) в виде:

$$E = E^{0} - kT/e \ln a_{Li^{+}}^{} - kT/e \ln a_{e}^{},$$
(6)

где: Е – потенциал графитового электрода относительно литиевого электрода сравнения.

Для оценки E^0 примем, что при x = 1 (372 мАч/г), E = 0. Тогда $E^0 = - kT/e \ln a_{Li^+}^{<H>} - kT/e \ln a_e^{<H>}$. Полагая активности ионов лития и электронов равными концентрации, имеем $E^0 = 0.06 \cdot 2 \lg 372 \cdot 2.25 \cdot 10^{19} = 2.631 \text{ B}.$

Исходное состояние: $a_{Li+}^{H>} = 0$; $a_e^{H>} = 4,4\cdot10^{12}$ е/г (минимальное из оговоренных в литературе для полупроводников значений). Исходное значение $E = 2,631 - 0,06 \text{ lg } 4,4\cdot10^{12} = 2,631 - 0,759 = 1,872$ В. Расчёт даёт для изменения потенциала ИЭ от глубины заряда х зависимость, приведенную в таблице 1.

Получаемая из данных таблицы 1 зависимость находит подтверждение только в части экспериментальных данных. Таким образом, расчёт по уравнению (4), выведенному на основе классических представлений, не может быть распространён на все случаи реального поведения бестокового потенциала углеродного электрода. Попробуем разобраться в этом несоответствии.

Слоистые соединения графита с литием были получены впервые химически в 1955– 1965 гг. обработкой графита парами лития [6]. Основной особенностью образования слоистых соединений, названных также соединениями внедрения, обнаруженной при их изучении, явилось ступенчатое послойное заполнение графита щелочным металлом.

X	0,0	0,0001	0,001	0,01	0,1	0,2	0,3	0,4
E,B	1,872	0,483	0,363	0,243	0,123	0,087	0,065	0,050
Χ	0,5	0,6	0,7	0,8	0,9	1,0		
E,B	0,039	0,029	0,023	0,014	0,008	0,0		

Таблица 1 – Зависимость потенциала Е от глубины заряда графита Х

Согласно рентгенографическим исследованиям графитовых электродов, процесс формирования соединений внедрения является стадийным (ступенчатым). При этом номер ступени п определяется числом углеродных слоёв (сеток графита), приходящихся на один слой лития [6], и для каждой ступени характерно существование соединений, приведенных в таблице 2.

Из данных таблицы 2 видно, что для III и II ступеней имеет место перекрывание структур, причём наряду со структурообразующим элементом LiC₆ проявляется другой структурообразующий элемент LiC₉, кратные производные для которого обнаруживаются рентгенографически.

У чистого графита толщина незаполненного слоя (расстояние между слоями углерода) составляет 3,354 Å [3], а толщина «сендвича» из двух слоёв углерода и одного слоя металла между ними не зависит от ступени, постоянна и равна 3,73 Å[6]. Таким образом, внедрение ионов лития раздвигает слои графита на 0,376 Å. Ионный радиус лития равен 0,78 Å (Гольдшмидт), 0,60 Å (Полинг). [8]. Толщины заполненных слоёв в зависимости от ступени приведены в таблице 2.

Номер ступени, п	VIII	IV	III	II		Ι
Состав LiC _у	LiC ₇₂	LiC ₃₆	LiC_{18} ,	LiC_{12} ,	LiC ₉	LiC ₆
			LiC ₂₇	LiC ₁₈		
Состав Li _x C	Li _{0,08} C ₆	Li _{0,17} C ₆	Li _{0,33} C ₆	$Li_{0,5}C_6$	Li _{0,67} C ₆	Li_1C_6
			Li _{0,22} C ₆	Li _{0,33} C ₆		
Толщина слоя I _c , Å	27,05*	13,75	10,4	7,05		3,70
	27,2**	13,8	10,4	7,06		3,703
Расход мАч/г	31	62	124	186		372
			83	124	248	
Кул/г	112	223	446	670		1339
			299	446	893	
Э/г*10 ²⁰			28	42		
	7	0,5	19	28	56	84
Э/М*10 ²³			2,0	3,0	4,0	6,0
	0,5	1,0	1,4	2,0		

Таблица 2 – Характеристика ступеней заполнения графита литием

* – из [6],

** – из [10].

Соединения лития с графитом можно получить как химическим, так и электрохимическим способами. Такая возможность для соединений внедрения лития в графит вначале наблюдалась при электролизе расплавов [6], а затем была подробно изучена для неводных растворов [10]. Сравнение измеренных в [10] методом XDR значений периода идентичности (толщины слоя) для разных степеней заполнения показывает полную идентичность свойств ступеней, получаемых химическим синтезом и электролизом.

Проведенный анализ полученных данных позволяет говорить о том, что для каждой ступени характерен свой электродный потенциал, значение которого подчиняется уравнению Нернста.

Материалы и методы исследования

В настоящем исследовании в качестве активного углеродного материала использовались: спектрально-чистый искусственный графит марки С-3 (СЧИГ), природный графит Курейского месторождения.

Конечное соотношение компонентов в активной массе электродов составляло 85/5/10% по массе в пересчёте на сухие компоненты (10% фторопласт 2 МЕ, и 5% ацетиленовый технический углерод А-437).

Электроды сушились вакуумном шкафу SPT-200 при температуре 180 °C в течение 6 часов. Противоэлектродом служил металлический литий.

В качестве электролита в данной работе использовался 1 М раствор перхлората лития (LiClO₄) в смеси растворителей пропиленкарбоната (ПК) и диметооксиэтана (ДМЭ) в соотношении 7:3 с добавлением 10–25% диоксида серы (SO₂). Содержание влаги не превышало 30–50 ppm.

Результаты исследования и их обсуждение

Заряд (интеркалация) и разряд (деинтеркалация) углеродных электродов осуществлялись постоянным током плотностью 30–60 мА/г. Величины электродных потенциалов измерялись при разных значениях *x* как в ходе заряда, так и после окончания заряда. Потенциал литиевого электрода в данном электролите может быть принят за стандартный. Его значение в водородной шкале для электролита на основе ПК составляет 2,89. Серия проведенных опытов показала, что измеряемые значения потенциала не зависят от концентрации LiClO₄, а также от перемешивания, что говорит о равновесности исследуемых потенциалов интеркалатных электродов.

В условиях разомкнутой цепи на границе интеркалатного электрода с апротонным электролитом устанавливается равновесие:

$$xLi^{+}_{(p-p)} + 6C_{TB} + x = Li_{x}C_{6TB}$$
 (9)

Электродные потенциалы для реакции (11) измеряли в зависимости от x в интервале температур +45 ÷ -15 °C.

Напряжения разомкнутой цепи Li/AДP,LiClO₄/Li_xC₆ измеряли при разных концентрациях LiClO₄, величинах x и температурах. ЭДС рассматриваемой цепи, если оба электрода обратимы относительно ионов лития, выражается формулой (10), которую удобно представить в виде:

$$E = E^{0}_{Li+/Li} - E^{0}_{\mu HT} + 2.3 \text{ RT/F lg } \gamma x + 2.3 \text{ RT/F lg } a_{e}, \qquad (10)$$

т.е. зависит от концентрации лития в интеркалате (x), его коэфициента активности (γ), от концентрации (активности) электронов в электроде и не зависит от активности ионов лития в растворе.

Испытания электродов на основе СЧИГ показали, что с повышением температуры равновесный потенциал смещается в сторону отрицательных значений. Значения свободной энергии Гибса, найденные по уравнению Гибса-Гельмгольца для различных стадий внедрения, приведены в таблице 3.

Функция	Значение х в Li _x C ₆						
	0,1	0,17	0,24	0,34	1,0		
-ΔG, кДж/моль	205	216	219	227	227		
-ΔS, кДж/моль	0,52	0,49	0,42	0,23	0,23		
-∆Н, кДж/моль	362	360	346	296	296		
dE/dT, мB/К	5,4	5,1	4,4	2,4	2,4		

Таблица 3 – Термодинамические функции

Исследования аморфных материалов в электролите на основе карбонатных растворителей (ПК и др.) показали отсутствие каких-либо явных закономерностей, что говорит об упорядоченности материалов.

Единственным принципиальным отличием этих данных является область потенциалов образования интеркалатов. Она смещена к меньшим значениям Е, которым отвечает изменение свободной энергии Гибса ΔG ~ 220 кДж/моль. Из литературы известно [6], что величина теплоты реакции образования ступени существенно зависит от типа графита, и для искусственного графита на 42 кДж/г больше, чем для природного в случае реакции калия с графитом [6].

Заключение

Анализ экспериментальных зависимостей бестокового потенциала для разных углеродных материалов в разных электролитах от содержания интеркалированного лития в структуре углерода не позволяет сделать однозначных выводов о наличии удовлетворяющей теоретическим рассмотрениям данных. Выясняющаяся в ходе рассмотрения сложная картина позволяет сделать заключение о том, что требуется более детальное экспериментальное изучение данных зависимостей, результаты которых могут послужить основой для установления энергетических особенностей процесса интеркалации лития в углеродные материалы, необходимых для направленного выбора новых перспективных электродных материалов.

Список литературы

1. Дамаскин Б.Б., Петрий О.А. Основы теоретической электрохимии. – М. : Высшая школа, 1978. – С. 100.

2. Кнунянц И.Л. Химическая энциклопедия. – М. : Советская энциклопедия, 1990. – Т. 2. – С. 243.

 Кнунянц И.Л. Химическая энциклопедия. – М. : Советская энциклопедия, 1988. – Т. 1. – С. 607.

4. Матвеев А.Н. Электричество и магнетизм. – М. : Высшая школа, 1983. – С. 23.

5. Мямлин В.А., Плесков Ю.В. Электрохимия полупроводников. – М. : Наука, 1965. –
С. 13.
6. Новиков Ю.Н., Вольпин М.Е. // Успехи химии. – 1971. – 51. – С. 1568.
7. П. – А.М. Ф. – М. Ф. – М. – О. – 1000.

7. Прохоров А.М. Физическая энциклопедия. – М. : Советская энциклопедия, 1990. – Т. 2. – 533 с.

 Прохоров А.М. Физическая энциклопедия. – М. : Советская энциклопедия, 1988. – Т. 1. – С. 157.

9. Gerischer H., Deker F., Scrosati B. // J. Electrochem. Soc. – 1994. – № 141. – C. 2297.

10. Petit M.A., Clarisse C., Templier F. // J. Electrochem. Soc. – 1993. – 140. – C. 2490.

Рецензенты:

Патрушева Т.Н., д.т.н., профессор, кафедра приборостроения и наноэлектроники Сибирского федерального университета, г. Красноярск.

Пантеллев В.И., д.т.н., профессор, зав. кафедрой электротехнических комплексов и систем Политехнического института Сибирского федерального университета, г. Красноярск. Работа получена 12.09.2011