ПРОДУКТИВНЫЕ И РЕПРОДУКТИВНЫЕ ПОКАЗАТЕЛИ КОРОВ ПРИ ИСПОЛЬЗОВАНИИ В РАЦИОНАХ КОРМОВЫХ ДОБАВОК ПРОБИОТИЧЕСКОГО, ПРЕБИОТИЧЕСКОГО И СИМБИОТИЧЕСКОГО ДЕЙСТВИЯ

Ушкова О.Ю.¹, Батанов С.Д.¹

 1 ФГБОУ ВПО Ижевская ГСХА (426069, Удмуртская Республика, г.Ижевск, ул.Студенческая,11, е-mail:info@izhgsha.ru)

Приводятся данные по изучению влияния про- пре — и симбиотических добавок на молочную продуктивность и воспроизводительные качества коров холмогорской породы. Для научно-хозяйственного опыта было отобрано 4 группы глубокостельных (7-8 месяц стельности) коров. Анализировались такие показатели как: удой за 305 дней лактации, массовая доля жира и белка в молоке, выход молочного жира и белка за лактацию, продуктивный индекс, индекс осеменения, продолжительность сервис-периода, межотельного периода, коэффициент воспроизводительной способности, динамика живой массы и среднесуточных приростов полученного молодняка. При этом было выявлено, что включение в рацион коров биологически активных веществ способствовало достоверному увеличению молочной продуктивности, выходу молочного жира и белка за лактацию, улучшились воспроизводительные качества коров.

Ключевые слова: пробиотик, пребиотик, симбиотик, молочная продуктивность, воспроизводительные качества.

PRODUCTIVE AND REPRODUCTIVE INDICATORS OF COWS AT USE IN DIETS OF FODDER ADDITIVES OF PROBIOTIC, PREBIOTICHESKY AND SIMBIOTICHESKY ACTION

Ushkova O.J.¹, Batanov S.D.¹

¹Izhevsk state agricultural academy (426069, Udmurt Republic, Izhevsk, Studencheskaya street? 11, e-mail:info@izhgsha.ru)

The data on influence studying about probiotic, prebiotic and symbiotic additives on dairy efficiency and reproductive qualities of cows holmogor breeds are cited. For scientifically-economic experience 4 groups pregnancy (7-8 month pregnancy) cows have been selected. Such indicators as were analyzed: a yield of milk for 305 days of a lactation, a fat and fiber mass fraction in milk, an exit of dairy fat and fiber for a lactation, a productive index, an insemination index, duration of the service-period, between sorts the period, factor of reproductive ability, dynamics of live weight and daily average gain the received young growth. It has been thus revealed, that inclusion in a diet of cows of biologically active substances promoted dairy efficiency of cows, an exit of dairy fat and fiber for a lactation has authentically increased, reproductive qualities of cows have improved.

Keywords: probiotic, prebiotic, simbiotic, dairy efficiency, reproductive qualities.

Введение

В числе факторов, определяющих молочную продуктивность коров, наряду с условиями кормления, содержания и генетическим потенциалом важную роль играет уровень воспроизводства стада [4]. В последние годы в России выход телят составляет в среднем 76-77 голов. В Удмуртской Республике этот показатель в 2010 году составил 79 голов [1]. Бесплодие коров не только уменьшает выход телят и сдерживает темпы обновления стада, но и значительно снижает удой за определенный календарный период года [4].

В связи с чем в настоящее время остро стоит вопрос проблемы воспроизводства стада и увеличения молочной продуктивности коров. Одним из главных факторов, влияющих на

продолжительность сервис-периода и уровень молочной продуктивности, наряду с грамотной селекционной работой, а также улучшениями условий содержания, является обеспечение животного питательными веществами, реализуемое через кормление. Перспективным направлением улучшения полноценности рационов является включение в их состав препаратов пробиотического, пребиотического и симбиотического действия. Одними из таких являются препараты «Бацелл» (пробиотик), «ЛактАцид» (пребиотик) и их смесь, сочетающая в себе свойства симбиотика.

«Бацелл» прошел производственное испытание в хозяйствах и на предприятиях Краснодарского края и других областей, «ЛактАцид» широко используется в птицеводстве, свиноводстве, скотоводстве, однако отсутствуют данные о влиянии препаратов и их смеси на молочную продуктивность, качество молока и воспроизводительную способность коров.

Целью исследований являлось определение целесообразности использования в рационах крупного рогатого скота биологически активных добавок, их влияние на молочную продуктивность и воспроизводительную способность коров.

Материал и методы исследования

Научно-хозяйственный опыт по изучению эффективности использования биологически активных добавок в кормлении крупного рогатого скота был проведен в период с 2010 по 2012 гг. в ОАО «Путь Ильича» Завьяловского района Удмуртской Республики.

Для этого по принципу пар-аналогов было сформировано 4 группы полновозрастных коров холмогорской породы (в каждой группе по 15 голов), находящихся в сухостойном периоде. Коровы контрольной группы получали хозяйственнный рацион, а коровам опытных групп в смеси с концентрированными кормами один раз в сутки во время утреннего кормления дополнительно скармливали пробиотик («Бацелл») — 1 опытная группа, пребиотик («ЛактАцид») — 2 опытная группа и симбиотик (про-и пребиотик в соотношении 50/50%) — 3 опытная группа индивидуально каждому животному в дозировке 50 г.

Результаты исследования и их обсуждение

Многочисленными исследованиями было выявлено, что уровень молочной продуктивности и воспроизводительные функции коров тесно взаимосвязаны между собой. Анализ молочной продуктивности коров представлен в таблице 1.

. Таблица 1 Показатели молочной продуктивности подопытных животных за 305 дней лактации, $X\pm m_x$

	Группы			
Показатель	Контрольная	1 Опытная	2 Опытная	3 Опытная
	$X \pm m_x$	$X \pm m_x$	$X \pm m_x$	$X \pm m_x$

Живая масса, кг	520,3±5,40	519,8±6,10	521,0±5,86	520,7±4,76
Удой за 305 дней, кг	5223±124,9	5317±150,9	5881±166,9** ¹ * ²	5651±160,0* ¹
Массовая доля жира, %	3,75±0,04	3,78±0,03	3,77±0,03	$3,90\pm0,05*^{1}*^{2}$
Количество молочного жира, кг	195,9±5,12	201,0±5,20	221,7±6,00** ¹ * ²	220,4±10,4* ¹
Массовая доля белка, %	2,96±0,02	2,98±0,03	2,97±0,02	2,97±0,02
Количество молочного белка, кг	154,6±4,07	158,4±4,67	174,7±4,99** ¹ * ²	167,8±5,0*1
Продуктивный индекс, кг	5688±134,3	5843±150,3	6463±155,1*** ¹ ** ²	6434±168,6** ¹ * ²

^{*-} достоверно при P≤0,05; ** - достоверно при Р≤0,01;*** - достоверно при Р≤0,001

Как видно из данных таблицы 1, в результате вскармливания животным биологически активных добавок их молочная продуктивность увеличилась в сравнении с контрольной группой на 1,8-12,6 %. При этом наивысший удой за 305 дней лактации (5881кг) имели коровы 2 опытной группы, получавшие в качестве добавки пребиотик «ЛактАцид», что достоверно (Р≤0,01) выше, чем у аналогов контрольной группы на 658 кг или 12,6% и на 564 кг или 10,6% (Р≤0,05) в сравнении со сверстницами 1 опытной группы. Животные 3 опытной группы по удою также достоверно (Р≤0,05) превосходили аналогов контрольной группы на 428 кг (8,2%). Разница по удою между коровами контрольной и 1 опытной группами статистически была недостоверна и составила 94 кг (1,8%).

Молочная продуктивность коров определяется не только количеством, но и качеством молока при этом особое место и большое значение имеют молочный жир и белок. Максимальное содержание жира было выявлено в молоке коров 3 опытной группы и составило 3,90 %, что выше в сравнении с контрольной и 2 опытной группами на 0,15 % и 0,13% соответственно при Р≤0,05.

Важными признаками являются общий выход молочного жира и белка, которые дают более полную характеристику продуктивных качеств коров За лактацию количество молочного жира и молочного белка достоверно ($P \le 0.01$) больше было получено от коров 2 опытной группы на 25,8 кг (13,2%) и 20,1 кг (13,0%) соответственно в сравнении с аналогами контрольной группы, а по отношению к 1 опытной группе - на 20,7 кг (10,3%) и 16,3 кг (10,3%) при $P \le 0.05$. Также достоверно ($P \le 0.05$) большее количество жира и белка за лактацию в сравнении с животными контрольной группы было получено от коров 3 опытной группы на 24,5 кг (12,5%) и 13,2 кг (8,6%).

Согласно ГОСТ Р 52054-2003 «Молоко натуральное коровье-сырье. Технические условия», базисная общероссийская норма массовой доли жира молока составляет 3,4%,

¹- между контролем опытными группами; ²- между опытными группами

базисная норма массовой доли белка — 3,0%. Для расчета продуктивного индекса (ПИ) использовали данные базисной нормы массовой доли жира и белка. Так, за лактацию от коров 2 опытной группы молока базисной жирности и белковомолочности было получено достоверно (Р≤0,001) больше на 775 кг или 13,6%, чем от животных контрольной группы и на 620 кг (10,6%) при Р≤0,01по отношению к аналогам 1 опытной группы. Коровы 3 опытной группы, получавшие в качестве добавки смесь про- и пребиотика, также по данному показателю превосходили своих сверстниц контрольной и 1 опытной группы на 746 и 591 кг или 13,1 и 10,1% (Р≤0,01, Р≤0,05) соответственно. Между животными контрольной и 1 опытной группами разница составила 175 кг молока или 3,1% в пользу 1 опытной группы при Р>0,05.

Воспроизводительная функция животных лишь на 10 % обусловлена генетическими факторами и на 90 % - факторами внешней среды, особенно полноценностью кормления [2].

Основными факторами, определяющими эффективность воспроизводства, являются: межотельный период, сервис-период, индекс осеменения, коэффициент воспроизводительной способности (КВС) [5].

В таблице 2 представлены воспроизводительные качества коров за анализируемый период.

Анализ полученных данных (табл.2) выявил относительно высокие показатели межотельного периода в группах животных. Варьирование показателей признака у коров в группах находилось в пределах 373-401 день. Наименьшая продолжительность межотельного периода (373 дня) отмечена в 1 опытной группе животных, наибольшая − 401 день у коров контрольной группы (Р≤0,05).

Таблица 2 Воспроизводительные качества полновозрастных коров

	Группы			
Показатель	Контрольная	1 Опытная	2 Опытная	3 Опытная
	$X \pm m_x$	$X \pm m_x$	$X \pm m_x$	$X \pm m_x$
1.Индекс осеменения	1,78±0,28	$1,44\pm0,24$	1,67±0,24	1,67±0,30
2.Продолжительность	122±8,37	93±11,25*	103±12,15	107±12,21
сервис-периода, дней	12210,37	93±11,23	103±12,13	107±12,21
3.Продолжительность	401±10,25	373±7,25*	381±11,15	386±12,16
межотельного периода, дней	401±10,23	313-1,23	301-11,13	300±12,10
4. KBC	0,91±0,02	0,98±0,02*	0,96±0,04	0,95±0,05

^{*-} достоверно при Р≤0,05

Интенсивность воспроизводства стада имеет высокую зависимость от продолжительности сервис-периода, которая связана не только с воспроизводительными функциями, но и с молочной продуктивностью, так как чем более продолжителен сервис-

период, тем на более поздний срок оттягивается начало торможения молокообразования [5]. А также следует отметить, что продолжительность сервис-периода относится к числу важных паратипических факторов, влияющих на продуктивное долголетие коров [3].

Изменение длительности сервис-периода в анализируемых группах, изучение и анализ этого фактора позволил выявить такую же закономерность, что была характерна для межотельного периода. Так, продолжительность сервис-периода варьировала в пределах 93 – 122 дня.

Нами было выявлено, что животные 1 опытной группы имели достоверно (P≤0,05) меньшую продолжительность сервис-периода по сравнению с контрольной группой на 29 дней, коровы 2 и 3 опытных групп на 19 и 15 дней соответственно, при этом разница была недостоверна.

Одним из основных показателей плодовитости является индекс осеменения. 1.5. 2-2,5 Показатель индекса осеменения, равный считается отличным, удовлетворительным. Увеличение индекса осеменения свыше ЭТИХ нормативов свидетельствует о неблагополучии в воспроизводстве стада [6]. Лучший показатель индекса осеменения был у коров 1 опытной группы (1,44), что ниже в сравнении с индексом осеменения в контрольной группе на 0,34 и на 0,23 аналогов 2 и 3 опытных групп. Разница во всех случаях была недостоверна.

Полученные данные свидетельствуют о том, что лучшие воспроизводительные качества имели коровы 1 опытной группы, получавшие в качестве добавки пробиотик «Бацелл», коэффициент воспроизводительной способности которых равен 0,98, что достоверно выше ($P \le 0,05$) в сравнении с контрольной группой на 7,69 %. В других анализируемых группах КВС коров находился в пределах 0,91-0,96.

Известно, что условия кормления и содержания стельной коровы существенно влияют на ее будущее потомство.

В таблице 3 представлены данные динамики живой массы и среднесуточных приростов телок до 6-ти месячного возраста, полученных от коров-матерей контрольной и опытных групп в 2011 году.

Таблица 3 Динамика живой массы и среднесуточных приростов телок до 6-ти месячного возраста, X \pm m_x

Показатель	Группы			
	Контрольная	1 Опытная	2 Опытная	3 Опытная
	$X \pm m_x$	$X \pm m_x$	$X \pm m_x$	$X \pm m_x$
Живая масса при рождении,	38,2±0,23	39,2±0,45	38,8±0,23	38,6±0,37

КГ				
Живая масса в 6 месяцев, кг	167±2,87	164,2±2,62	173,3±2,98* ¹ * ²	168,6±3,99
Среднесуточный прирост, г	743±29,1	703±28,3	784±24,0* ²	771±28,7
Абсолютный прирост, кг	128,8±2,8	125,0±2,6	134,5±4,2	130±2,0
Относительный прирост, %	126±1,44	123±1,88	127±1,35	125±3,51

^{*-} достоверно при Р≤0,05

Сравнительное изучение массы тела ремонтных телок в молочный период (табл.3) показало, что телки, полученные от коров опытных групп, при рождении имели большую живую массу в сравнении с аналогами контрольной группы на 1,05 - 2,62 %. При этом наибольшей живой массой характеризовался молодняк, полученный от коров 1 опытной группы (39,2 кг). Наибольшей живой массой в 6-ти месячном возрасте обладали телки, полученные от коров 2 опытной группы, что достоверно выше (Р≤0,05) в сравнении с аналогами, полученными от коров контрольной группы, на 3,8%, сверстницами 1 опытной группы − 5,5% (Р≤0,05), сверстницами 3 опытной группы – на 2,8%. Аналогичная тенденция наблюдалась в среднесуточных и абсолютных приростах: наивысший среднесуточный прирост был у телок, полученных от коров 2 опытной группы (784 г), что достоверно выше (Р≤ 0,05) на 11,5% в сравнении со сверстницами 1 опытной группы; показатель абсолютного прироста также был выше у телок, полученных от коров 2 опытной группы, в сравнении с аналогами, полученными от коров всех анализируемых групп (Р>0,05).

Заключение

Таким образом, в ходе исследования было выявлено, что биологически активные добавки оказывают положительное влияние на увеличение молочной продуктивности и улучшение качественных показателей молока; стимулируют развитие воспроизводительной функции животных, а также полученного молодняка, способствуя тем самым повышению эффективности молочного скотоводства.

Список литературы

- 1. Ижболдина С.Н. Воспроизводство стада: проблемы и решения // Агропром Удмуртии.-2011.-№7-8.-С.44-45.
- 2. Кальницкий Б.Д. Минеральные вещества в кормлении животных /Б.Д. Кальницкий.- М.: Агропромиздат.- Ленинградское отделение, 1985.- 207 с.
- 3. Пащенко С.В. Повышение эффективности селекции молочного скота на продуктивное долголетие // Нива Поволжья. 2010. № 1. С. 83-86.

¹⁻ между контролем опытными группами; 2- между опытными группами

- 4. Пониткин Д.М. Пути получения высококачественного молока / Д.М. Пониткин, Н.Н. Лаушкина // Зоотехния. 2006. № 10. С. 15-18.
- 5. Хохряков С.А. Влияние систем содержания на хозяйственное использование молочного скота в Удмуртской Республике: дис. канд. с.-х. наук.- Ижевск, 2007.- 132 С.
- 6. Чомаев Азрет. От каждой коровы по теленку в год // Животноводство России.-2007.-№ 5- С. 41-42.

Рецензенты:

Мартынова Екатерина Николаевна – доктор сельскохозяйственных наук, профессор, и.о. заведующего кафедрой кормления и разведения сельскохозяйственных животных ФГБОУ ВПО Ижевская ГСХА, г.Ижевск.

Ижболдина Светлана Николаевна - доктор сельскохозяйственных наук, профессор, и.о. заведующего кафедрой технологии механизации производства продукции животноводства ФГБОУ ВПО Ижевская ГСХА, г.Ижевск.