УДК 616.12-008.331.1+616.72-002.77]-08:615.225.2

ВЛИЯНИЕ ЛИЗИНОПРИЛА НА РЕГУЛЯТОРНО-АДАПТИВНЫЙ СТАТУС БОЛЬНЫХ ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНЬЮ II СТАДИИ В СОЧЕТАНИИ С РЕВМАТОИДНЫМ АРТРИТОМ

Самородская Н. А., Елисеева Л. Н., Бледнова А. Ю., Оранский С. П.

ГБО УВПО Кубанский государственный медицинский университет, Краснодар Краснодар, Россия (350000, г. Краснодар, ул. Седина, 4) Email:docsam@mail.ru

Изучено изменение регуляторно-адаптивных возможностей организма у больных ГБ, сочетанной с РА под влиянием лизиноприла, методом сердечно-дыхательного синхронизма. Обследовано 174 больных, которые после письменного информированного согласия рандомизированы в 2 группы. 1-ю (основную) составили 124 больных с ГБ II стадии 1–2 степени в сочетании с РА, принимающих традиционную базисную противовоспалительную терапию, 2-ю (сравнения) 50 больных ГБ II стадии 1–2 степени, без признаков РА. Назначена терапия лизиноприлом в индивидуально подобранных дозах (средняя доза 10,1±0,9 мг/сут). По результатам сердечно-дыхательного синхронизма терапия лизиноприлом позволила оптимизировать регуляторно-адаптивный статус у пациентов с ГБ II ст.

Ключевые слова: артериальная гипертензия, лизиноприл, сердечно-дыхательный синхронизм, регуляторно-адаптивный статус.

INFLUENCE OF LISINOPRIL ON REGULATORYADAPTIVE STATUS OF ESSENTIAL HYPERTENSION'S PATIENTS ASSOCIATED WITH RHEUMATOID ARTHRITIS

Samorodskaya N. A., Eliseeva L. N., Blednova A. Y., Oranskiy S. P.

HBO UVPO Kuban State Medical University, Krasnodar Krasnodar, Russia (350000, Krasnodar, Sedina Street 4).Email: <u>docsam@mail.ru</u>

The change in regulatory - the adaptive capacity of the organism in patients with hypertension combined with rheumatoid arthritis under the influence of lisinopril, a method of cardio-respiratory synchronization. A total of 174 patients who, after written informed consent were randomized into 2 groups. 1^{st} (main) were 124 patients with essential hypertension stage II, grade 1-2, in conjunction with rheumatoid arthritisreceiving traditional antiinflammatory therapy, 2^{nd} (comparison) of 50 patients with essential hypertension stage II, grade 1-2, with no signs of rheumatoid arthritis. Assigned to lisinopril therapy in individually selected doses (mean dose $10.1 \pm 0.9 \,$ mg / day). As a result of cardio-respiratory synchronization therapy with lisinopril allowed to optimize theregulatory and adaptive status in patients with essential hypertension II stage.

Key words: essential hypertensia, lisinopril, cardio-respiratory synchronism, regulatory-adaptation status.

Введение

Гипертоническая болезнь (ГБ) относят к болезням нарушенной нейро-гуморальной регуляции с преобладанием активности симпато-адреналовой и ренин-ангиотензинальдостероновой систем [20]. Особые проблемы возникают при сочетании ГБ с другими заболеваниями, которые сами могут влиять на вегетативную и стресс-лимитирующие системы, определяющие тяжесть и направленность всех органных изменений при ГБ. В указанном аспекте значим ревматоидный артрит (РА), так как иммунные нарушения, составляющие основу патогенеза ревматоидного артрита, в качестве триггерного звена между факторами, ассоциирующимися с самой болезнью, ее терапией и «классическими» (возрастными, генетическими) факторами риска сердечно-сосудистых осложнений [18].

Указанные факты обосновывают необходимость поиска объективных методов контроля за адекватностью и направленностью регуляторно-адаптивных изменений в целом организме на фоне антигипертензивной терапии. Одним из наиболее объективных количественных методов, позволяющих исследовать и оценить комплексное взаимодействие вегетативных составляющих нейро-гуморальной регуляции организма в целом, может стать проба сердечно-дыхательного синхронизма (СДС), учитывающая взаимодействие двух важнейших функций вегетативного обеспечения — сердечную и дыхательную [17]. Целью исследования явилась оценка особенности влияния лизиноприла на регуляторно-адаптивный статус пациентов с гипертонической болезнью II стадии в сочетании с ревматоидным артритом.

Материалы и методы

Основную (І-ю) группу, после получения письменного информированного согласия, составили 124 больных ГБ II стадии (диагноз ГБ верифицировали в соответствие с рекомендациями ВНОК и МОАГ 2010 г.) 1-2 степени в сочетании с РА (верификация диагноза РА, степени активности и рентгенологической стадии проводилась на основании диагностических критериев Американской ревматологической ассоциации (АРА) 1987 г., и классификации РА, утвержденной пленумом Ассоциации ревматологов России (АРР) в 2007 г.), из них 72 женщины и 52 мужчины в возрасте 56.4 ± 6.8 лет, при этом продолжительность заболевания РА >10 лет, клинически стабильным, вне стадии обострения. Группу сравнения (II-ю) составили сопоставимые по возрасту и полу 50 больных ГБ II стадии 1–2 степени, без признаков РА или другой суставной патологии, требующей применения лекарственных препаратов. В исследование не включали больных: не достигших целевого уровня АД к 12 недели, с острыми формами ИБС, симптоматической артериальной гипертонией, диагностированными нарушениями ритма и проводимости, перенесенными имеющимися нарушениями мозгового кровообращения (геморрагический или ишемический инсульт, транзиторные ишемические атаки), наличием сахарного диабета 1 и 2 типов, ХСН выше I стадии II функционального класса, ревматическими или другими воспалительными заболеваниями любых органов, состояний эмоциональных и физических перегрузок, гематологических, онкологических заболеваний, принимающих психотропные вегетокоррегирующие препараты. Антигипертензивная терапия проводилась с применением лизиноприла (диротон, "Gedeon Richter", Венгрия) в 1-ой и 2-ой группах в индивидуально подобранных дозах (средняя доза 10,1±0,9 мг/сут). Пациенты, включенные в исследование, не принимали антигипертензивную терапию вообще или лечились нерегулярно, с последним приемом препаратов более 7-10 дней до начало исследования. В качестве базисной терапии РА использованы: метотрексат в индивидуально подобранных дозах (средняя доза 12,3±0,9 мг/сут) и НПВС в основном нимесулид (средняя доза 72,4±1,2 мг/сут), который назначался в

режиме «по требованию». Исходно и через 1, 3 и 6 месяцев монотерапии лизиноприлом пациентам в 1-ой и 2-ой группах были выполнены суточное мониторирование АД (МН СДП 2, Россия), анализировались стандартные показатели [9]; эхокардиография (ЭХОКГ) аппаратом ALOKA SSD 5500 с датчиком 3,25 МГц (Япония) в стандартных позициях [10]. Для оценки состояния регуляторно-адаптивного статуса проводилась проба СДС на аппарате РНС МИКРО (Россия), заключавшаяся в установлении синхронизации между заданным ритмом дыхания и сердцебиением, при высокочастотном дыхании в такт вспышкам фотостимулятора [15]. Анализировались минимальная и максимальная границы диапазона синхронизации, диапазон синхронизации (ДС), длительность развития СДС на минимальной и максимальной границах синхронизации. Рассчитывали индекс регуляторно-адаптивного статуса (ИРАС) – ДС/ДлРмин.гр.×100 [17]. Одновременно оценивали показатели вариабельности ритма сердца (BPC): среднее значение R-R интервалов (RRNN), коэффициент вариации (CV), общая мощность спектра (TP), мощность волн низкой частоты (%LF), мощность волн высокой частоты (% HF), индекс централизации (ИЦ), коэффициент вагосимпатического баланса (LF/ HF). Обработка полученных данных выполнена с помощью пакета программ STATISTICA 6.0 (Stat Soft Inc, США). Распределение значений количественных признаков проверялось на нормальность с помощью одностороннего теста Колмогорова – Смирнова. Во всех случаях была установлена нормальность распределения. Описание количественных признаков выполнено с помощью среднего арифметического стандартного отклонения. Сравнение значений количественных признаков в группах выполнено с помощью *t*_критерия Стьюдента для независимых выборок, качественных признаков – с помощью критерия Пирсона у2. Статистически значимыми считали различия при p < 0.05.

Результаты исследования

Анализ основных показателей СДС и ВРС позволил выявить индивидуальную неоднородность как исходного состояния пациентов, так и реакции их регуляторно-адаптивных систем на лечение лизиноприлом.

В зависимости от значений индекса вагосимпатического взаимодействия (отношение нормализованного спектра высокочастотного диапазона к спектру низкочастотного диапазона (LF/HF)) определяют симпатикотонический вариант при LF/HF<1,05; смешанный вариант при 1,05 <LF/HF<0,95; ваготонический вариант при LF/HF <0,95. Соответственно в каждом варианте выделяют 3 уровня ИРАС: низкий – при значениях ИРАС <30; средний – при значениях ИРАС от 31 до 59; высокий при ИРАС>60. Длительная терапия лизиноприлом сопровождалась достоверным снижением уровня как систолического (САД), так и диастолического (ДАД) давления, коррекцией суточного профиля АД. Так, в І-ой группе на

фоне 6 месячной терапии лизиноприлом САД снизилась на 13,1 %, ДАД на 9,1 %, в то время как во ІІ –ой группе САД снизилось на14,8 %, ДАД на 13,9 %. По данным ЭХОКГ к 6 месяцу наблюдения, на фоне терапии лизиноприлом, достоверно улучшалась диастолическая функция сердца, что выражалось в увеличении соотношения пикового кровотока в период раннего наполнения левого желудочка и систолы левого предсердия (Е/А) (на 9,8 % - у пациентов І-ой группы и на 18,8 % у пациентов 2-ой группы) и снижению времени изоволюметрического расслабления (IVRT) (на 12,1 % и на 15,6 % соответственно в I-ой и IIой группах), а также увеличение ФВЛЖ (на 3,0 % и на 3,7 % соответственно в І-ой и ІІ-ой группах), что не противоречит литературным данным [5] в отношении ГБ, при РА этому вопросу уделялось мало внимания. У пациентов как І-ой, так и ІІ-ой групп достоверно снижались: толщина задней стенки ЛЖ (ЗСЛЖ) (на 4,3 % и на 14,4 % соответственно) и межжелудочковой перегородки (МЖП) (на 7,1 % и на 9,1 % соответственно). На фоне монотерапии лизиноприлом, по данным основных показателей СДС, у больных с исходным преобладанием симпатикотонии (СПна и СПва) к 6 месяцу наблюдения, в І-ой группе (табл.1) достоверно увеличился ИРАС (на 22,5 % и на 27,2 % соответственно) и во ІІ-ой группе на 56,4 % и на 66,5 % соответственно. В группе больных с исходным преобладанием активности парасимпатикотонии (ПСПна и ПСПва) у пациентов І-ой и ІІ-ой группах (табл.1) достоверных изменений ИРАС не отмечалось. Изменения в подгруппах с умеренным уровнем адаптации и при сбалансированном типе регуляции носили промежуточный характер.

Параметры сердечно-дыхательного синхронизма у больных I-ой и II-ой групп (М±m) Таблица № 1

Показатели	І-я группа Симпатикотония n=76				І-я группа Парасимпатикотония n=48			
Адаптивный статус	Низкий		Высокий		Низкий		Высокий	
Длительность наблюдения	исх.	6 мес.	исх.	6 мес.	исх.	6 мес.	исх.	6 мес.
Исходная ЧСС	$69,1\pm0,9$	64,2±3,6*	83,2±7,5	74,2±2,4*	73,3±1,2	68,2±0,8*	64,9±1,8	63,3±1,9*
Мин. граница диапазона (кардиоциклы)	49,3±2,2	51,2±1,2*	65,1±4,8	68,4±1,3*	73,2±2,3	60,2±0,9*	87,2±17,6	64,3±2,6*
Макс. граница диапазона (кардиоциклы)	69,2±2,6	74,2±4,5*	55,4±1,2	57,3±1,5*	79,1±1,8	61,2±0,9*	89,1±5,6	70,1±4,2*
Длительность развития СДС на мин. границе (кардиоциклы)	22,1±0,8	21,2±0,4*	18,1±0,7	16,1±0,2*	36,2±0,2	22,2±0,03*	26,3±0,06	19,2±0,2*
Длительность развития СДС на макс. границе (кардиоциклы)	48,3±3,2	46,4±0,1*	24,2±0,	21,2±0,9*	19,1±0,03	10,2±0,03*	82,2±6,7	69,2±4,3*
Диапазон синхронизации (кардиоциклы)	5,1±0,2	11,3±0,08*	7,2±0,04	10,2±0,05*	7,2±0,03	5,1±0,02*	18,0±0,5	11,1±0,2*
ИРАС %	36,4±0,9	47,1±1,1*	38,8±0,8	53,3±4,6*	58,4±0,07	60,5±0,2	61,9±2,1	63,0±19,2
Показатели	II-я группа Симпатикотония n= 26			II-я группа Парасимпатикотония n=24			n=24	
Длительность наблюдения	исх.	6 мес.	исх.	6 мес.	исх.	6 мес.	исх.	6 мес.
Исходная ЧСС	74,4±2,3	70,1±2,1*	72,6±2,4	68,3±2,8*	64,2±4,4	57,3±3,1*	66,8±0,7	58,2±0,5*
Мин. граница диапазона (кардиоциклы)	71,1±2,8	78,4±0,872*	64,3±1,4	72,8±1,6*	73,5±0,8	71,1±2,2*	75,2±0,5	72,4±1,7*
Макс. граница диапазона (кардиоциклы)	70,4±2,2	81,2±1,1*	74,5±2,4	83,1±0,2*	76,7±2,3	74,8±2,3*	83,1±1,2	76,1±1,3*
Длительность развития СДС на мин. границе (кардиоциклы)	24,3±0,2	19,0±0,6*	15,7±0,4	11,2±0,4*	26,4±0,02	21,3±0,5*	22,5±0,01	19,7±0,5*
Длительность развития СДС на макс. границе (кардиоциклы)	27,5±0,4	21,8±0,5*	25,4±0,2	20,1±0,3*	17,5±0,4	16,3±0,02*	28,3±0,2	24,7±0,3*
Диапазон синхронизации (кардиоциклы)	8,1±0,03	11,1±0,01*	6,8±0,02	10,7±0,05*	11,2±0,03	6,4±1,1*	16,5±0,06	12,3±0,07*
ИРАС %	16,8±0,4	50,2±0,03*	32,8±0,6	75,3±0,02*	44,3±0,04	46,4±0,03	52,3±1,2	54,3±0,1
		ı		1	L	1	1	1

Примечание: ЧСС – частота сердечных сокращений, СДС – сердечно-дыхательный синхронизм, ИРАС – индекс регуляторно-адаптивного статуса. * – p<0,05 по сравнению с исходными значениями.

Наличие нежелательных побочных явлений (сухой кашель, головная боль, диарея), что потребовало бы снижения дозы или отмены препарата, в нашем наблюдении не выявлено.

Обсуждение

Полученные данные длительного лечения иАПФ – лизиноприлом к 6 месяцу терапии, продемонстрировали у пациентов как І-ой, так и ІІ-ой групп: безопасность и эффективность в качестве монотерапии. Анализ полученных результатов СМАД установил наличие нарушений суточного профиля АД как в І-ой, так и ІІ-ой группах, которые существенно не отличались до назначения антигипертензивной терапии. Исходный нормальный двухфазный суточный ритм АД не был изменен приемом лизиноприла, что свидетельствует в пользу физиологического действия препарата. У пациентов І-ой группы, по данным СМАД, снижение уровня АД происходило более медленно только к 3-ей недели терапии, что потребовало у 26 % больных увеличение средней дозы лизиноприла до 15,6±1,2 мг/сут, а у пациентов II-ой группы снижение уровня АД отмечено уже в течение 1-ой недели. Вероятно, совместное применение иАПФ и НПВС у пациентов І-ой группы приводит к ослаблению первого, связано это с тем, что в формировании их гипотензивного эффекта принимают участие простагландины, синтез которых нарушается в присутствии НПВС [7]. Морфометрические исследования по данным ЭХОКС показали, что преобладающим типом ремоделирования миокарда ЛЖ у пациентов І-ой группы была концентрическая гипертрофия. Ряд авторов придерживается мнения, что развитие гипертрофии ЛЖ при РА обусловлено не только наличием АГ, но также тесно связано с метаболическими (гиперлипидемия, абдоминальное ожирение) и гормональными (менопауза) нарушениями, возникающими в условиях хронического аутоиммунного воспаления при РА [8]. На фоне монотерапии лизиноприлом к 6 месяцу наблюдения отмечалось достоверное улучшение диастолической функции сердца и увеличение ФВЛЖ. Вместе с тем уменьшение показателей толщины ЗСЛЖ и МЖП оказались более выраженными у пациентов ІІ-ой группы, а у пациентов І-ой группы они изменялись в меньшей степени, вероятно, это связано с более медленным снижением уровня АД, что повлекло за собой несколько отсроченный эффект ремоделирования ГЛЖ, что нашло отражение и в исследовании SAMPLE. В группе больных с исходным преобладанием СПна и СПва у пациентов І-ой (в меньшей степени) и ІІ-ой (в большей степени) групп достоверно увеличились: ИРАС, что свидетельствует об улучшении регуляторно-адаптивных возможностей [16]. В группе больных с исходным преобладанием активности ПСПна и ПСПва у пациентов І-ой группы и ІІ-ой групп ИРАС не изменялся, что свидетельствовало об отсутствии изменения состояния регуляторноадаптивного статуса [16]. Исходя из вышесказанного, проба СДС является чувствительным, специфичным и информативным методом контроля эффективности и безопасности медикаментозной терапии, учитывающим не только динамику сердечно-сосудистого ремоделирования, но и способность организма к регуляции и адаптации у каждого пациента.

Список литературы

- 1. Кутишенко Н. П., Марцевич С. Ю. Лизиноприл в кардиологической практике: данные доказательной медицины // Рациональная фармакотерапия в кардиологии. 2007. № 5. C.79-82.
- 2. Муравьев Ю. В. Проблемы безопасности противоревматической терапии повышения артериального давления у больных ревматоидным артритом, получающих нимесулид // Научно-практ. ревматология. 2006. № 1. С. 61-62.
- 3. Мясоедова Е. Е., Мясоедова С. Е., Омельяненко М. Г. и др. Структурно-функциональные особенности миокарда левого желудочка и эндотелиальная дисфункция при ревматоидном артрите в зависимости от наличия артериальной гипертонии // Научно-практ. ревматология. 2007. № 3. С. 15-20.
- 4. Покровский В. М. и др. Система для определения сердечно-дыхательного синхронизма у человека / Покровский В. М., Пономарев В. В., Артюшков В. В. и др. // Россия, патент №86860, 2009 г.
- 5. Покровский В. М. Сердечно-дыхательный синхронизм: выявление у человека зависимости от свойств нервной системы и функциональных состояний организма / Покровский В. М., Потягайло Е. Г., Абушкевич В. Г., Похотько А. Г. // Успехи физиол. наук. 2003. Т. 34, №3. С. 68-77.
- 6. Покровский В. М. Сердечно-дыхательный синхронизм в оценке регуляторно-адаптивных возможностей организма. Краснодар: Кубань-Книга, 2010. 184 с.
- 7. Попкова Т. В., Новикова Д. С. Факторы риска кардиоваскулярных заболеваний при ревматоидном артрите // Науч.-практ. ревматология. 2009. № 9. С.4-11.
- 8. Рогоза А. Н. Суточное мониторирование артериального давления (по материалам методических рекомендаций ESH 2003) // Функциональная диагностика. 2004. № 4. С. 29-44.
- 9. Стрюк Р. И., Длусская Р. Г. Адренореактивность и сердечно-сосудистая система. М.: Медицина, 2003. С.158.
- 10. Шиллер Н. Б., Осипов М. А. Клиническая эхокардиография. М.: Практика, 2005. С. 344-345.

Рецензенты:

Борисов Ю. Ю., доктор медицинских наук, профессор, заведующий кафедрой терапии с курсом педиатрии МАОВПО Краснодарского муниципального медицинского института

высшего сестринского образования, г. Краснодар.

Кокуева О. В., доктор медицинских наук, профессор, заведующая кафедрой терапии $N \ge 2$ ФПК ППС ГБОУ ВПО КубГМУ Минздравсоцразвития РФ, г. Краснодар.