TEXHOЛОГИЧЕСКИЕ ОСОБЕННОСТИ И РЕСУРСОСБЕРЕЖЕНИЕ ПРИ ВОЗДЕЛЫВАНИИ FAGOPYRUM ESCULENTUM MOENCH В ЛЕСОСТЕПИ АЛТАЯ

Важов В.М., Ломовских Р.В., Козел А.Н.

ФГБОУ ВПО «Алтайская государственная академия образования им. В.М. Шукшина», Бийск, Алтайский край, Россия (659333, г. Бийск, ул. Короленко, 53), e-mail: vazhov1949@mail.ru

Посевные площади гречихи на Алтае в 2011 г. составили 422,2 тыс. га, основные посевы сосредоточены в лесостепи и в предгорьях (80%), однако урожайность зерна здесь низкая - 0,7-0,8 т/га, что связано с несовершенной агротехникой. Исследования показали, что технологические факторы при возделывании гречихи на чернозёмах вышелоченных лесостепи являются ведущими. В условиях лесостепи Алтайского края близкой к оптимальной норме минеральных удобрений гречихи можно считать $N_{30}P_{30}K_{30}$, лучше всего биологическим особенностям культуры отвечает посев в 1-й декаде июня. Урожайность зерна в этом случае составляет 1,30 т/га. Наиболее целесообразным способом посева гречихи является широкорядный (0,45 м) с нормой высева 3,5 млн всх. зёрен на 1 га, что позволяет получить 1,42 т/га зерна. Максимальная урожайность зерна в среднем за 3 года сформировалась при подкормке гречихи в начале бутонизации в комплексе с опылением пчёлами и искусственном доопылении цветков – 1,84 т/га. Выращивание гречихи в лесостепи Алтая с применением широкорядного способа посева (0,45 м), нормой высева 3,5 млн всх. зёрен на 1 га свидетельствует о высокой экономической и энергетической эффективности. Данные агротехнические приёмы позволяют существенно снизить себестоимость зерна, увеличить рентабельность производства и снизить энергетические затраты. Применение зонального научно обоснованного агротехнического комплекса позволит получать в лесостепи урожай зерна (1,5-2,0 т/га), при низкой себестоимости 1 т зерна - 3722 руб., высокой рентабельности 300% и эффективном энергетическом коэффициенте - 2,1.

Ключевые слова: Алтайский край, гречиха, посевные площади, урожайность, агротехнические приёмы, экономическая и энергетическая эффективность.

TECHNOLOGICAL FEATURES AND RESOURCE FOR CULTIVATION FAGOPYRUM ESCULENTUM MOENCH IN THE FOREST STEPPE ALTAI

Vazhov V.M., Lomovskaya R.V., Kozel A.N.

FGBOU VPO Altai State Academy of Educatio V.M. Shukshin (Biysk Altai Krai, Russia (659333, Biysk, st. Korolenko, 53), e-mail: vazhov1949@mail.ru

Buckwheat crop area in Altai in 2011 amounted to 422,2 thousand ha, the main crops are concentrated in the forest steppe and foothills (80%), but the grain yield is low - 0,7-0,8 t/ha, which is associated with imperfect cultivation techniques. Studies have shown that technological factors in the cultivation of buckwheat on leached chernozem steppe, are leading. In the forest-steppe of the Altai region close to the optimal rate of fertilizer can be considered crap $N_{30}P_{30}K_{30}$, best biological characteristics of culture is responsible seeding in the 1st half of June. Grain yield in this case is 1,30 t/ha. The most expedient way of sowing buckwheat is in wide (0,45 m) with seeding rate of 3,5 million EXP grains per 1 ha, which gives 1,42 t/ha of grain. The maximum grain yield an average of 3 years was formed at the beginning of feeding buckwheat budding in combination with artificial pollination by bees and flowers doopylenii - 1,84 t/ha. Growing buckwheat steppe Altai using wide-row planting method (0,45 m), seed rate of 3,5 million EXP grains per 1 ha shows the high economic and energy efficiency. These agricultural practices can significantly reduce the cost of grain, increase profitability, and reduce energy costs. Zonal science-based agronomic complex will receive in the forest steppe grain yield (1,5-2,0 t/ha), at a low cost of 1 ton of grain - 3722 rubles., 300% higher profitability and efficiency of the energy ratio - 2.1.

Keywords: Altai, buckwheat, sown area, yield, agricultural practices, economic and energy efficiency.

Введение. Гречиха посевная (*Fagopyrum esculentum* Moench.) – самая распространённая крупяная культура в Алтайском крае, её посевы в 2011 г. занимали 422,2 тыс. га [3], что составляло более 40% посевных площадей гречихи в России [5]. Максимальные посевы этой культуры – 339,3 тыс. га (80%) сосредоточены в лесостепных условиях (Приобская

лесостепь, лесостепь предгорий Салаира и предгорья Алтая), где имеются наиболее благоприятные агроэкологические ресурсы для её выращивания. Однако средняя урожайность гречихи на данной территории низкая, составляет 0,7-0,8 т/га при биологическом потенциале 2,5-3,0 т/га.

Цель исследования. К основным причинам низкой урожайности гречихи в основном относятся агротехнические, поскольку с ними связаны особенности освоения культурой агроэкологических ресурсов среды обитания [1; 5]. Кроме того, важное значение имеет ресурсосбережение, учитывающее экономическую эффективность и энергетическую целесообразность. В связи с этим цель наших исследований предусматривала изучение влияния отдельных технологических приёмов на урожайность гречихи посевной, их экономическую и энергетическую оценку в лесостепных условиях Алтайского края.

Материал и методы исследования. Полевые исследования проводились в 2009-2012 гг. в Целинном районе, типичном по природным показателям для лесостепи Алтайского края. Территория характеризуется относительно устойчивым и достаточным увлажнением, термический режим здесь благоприятен для зерновых культур.

Объект исследований – гречиха посевная сорта Дикуль. Опыты предусматривали изучение пищевого режима, сроков и способов посева, норм высева и опыления.

Почва опытных участков представлена чернозёмом выщелоченным маломощным среднесуглинистым. Содержание гумуса в пахотном горизонте – 5-6 %.

Площадь учётных делянок в опытах – 18 и 64 м², повторность опытов – 4-кратная, учёты и наблюдения – общепринятые в земледелии и растениеводстве.

При систематизации материалов наблюдений и экспериментов, обобщении общих вопросов возделывания гречихи, посевных площадей и урожайности использованы источники Алтайкрайстата, а также опыт передовых хозяйств.

Результаты исследования и их обсуждение. Хорошая естественная увлажнённость территории и плодородные почвы в целом характерны для лесостепных ландшафтов Алтайского края, расположенных в Приобье, в Бие-Чумышском междуречье, а также в предгорьях Салаира и Алтая [1; 2].

Приобская лесостепь представляет собой преимущественно открытую территорию, занимающую левобережье р. Оби [4]. Среднегодовое количество осадков колеблется от 305 до 395 мм, наиболее увлажнёнными являются июль и август, когда выпадает около 30-40% годовой нормы осадков; средняя высота снежного покрова — 30-35 см; запасы продуктивной влаги в метровом слое почвы к началу весенне-полевых работ составляют 100-120 мм; каждый третий год относится к острозасушливым; безморозный период длится 117-I28 дней с суммой температур 2270-2340 °C, в том числе на май-июль приходится 1470-1500 °C.

В центре лесостепи преобладают чернозёмы обыкновенные, в северной части почвенный покров представлен преимущественно обыкновенными и выщелоченными чернозёмами. Зона характеризуется расчленённым рельефом, значительная часть пахотных земель расположена на склонах и подвержена совместному проявлению ветровой и водной эрозии.

В лесостепи предгорий Салаира среднегодовое количество осадков возрастает от 400-450 до 520 мм, они устойчивы по годам; количество лет с недостатком влаги — 10-15%; за вегетационный период выпадает 250-320 мм осадков, из них 150-180 мм и больше (220 мм) — за май-июль; мощность снежного покрова — 50-65 см; средний запас продуктивной влаги к началу полевых работ в метровом слое почвы колеблется от 140-180 до 180-200 мм; средняя сумма температур за вегетацию — 2100-2300 °C, в том числе за май-июль — 1370-1500 °C [4]. Основными почвами являются выщелоченные чернозёмы и серые лесные в комплексе с оподзоленными чернозёмами.

Предгорья Алтая характеризуются изменчивостью выпадающих осадков, их среднегодовое количество варьирует от 350 мм на западе, до 440 мм на северо-востоке, за вегетацию выпадает 180-260 мм, в том числе за май-июль — 120-170 мм; средняя высота снежного покрова колеблется от 25 см в северо-западной части, до 40 см в северо-восточной и до 80 см слой снега формируется в подтаежной части; запасы продуктивной влаги в метровом слое почвы к началу полевых работ — от 105 до 160 мм. Сумма температур за вегетацию составляет от 2300 до 2500 °C, за май-июль — 1620-1720 °C [4].

Низкогорья Алтая отличаются более высоким агроклиматическим потенциалом, однако из-за сильной расчлененности рельефа территория представляет определённые сложности в сельскохозяйственном освоении. Это наиболее увлажненная территория со среднегодовым количеством осадков от 500 до 600 мм, их сумма за вегетационный период составляет 290-370 мм, в том числе на май-июль приходится 200-250 мм; высота снежного покрова колеблется от 50 до 60 см; запасы продуктивной влаги метрового слоя почвы, в условиях относительно ровного рельефа, к началу весенне-полевых работ достигают 200 мм и более; сумма температур за вегетационный период высокая — 2200-2300 °C, с мая по июль отмечается 1350-1500 °C [4].

В западной части территорию предгорий занимают южные и обыкновенные чернозёмы, а в северо-восточной — обыкновенные. В низкогорье преобладают тучные и выщелоченные чернозёмы с высоким содержанием гумуса и хорошей водоудерживающей способностью. Значительные площади занимают горные лесные почвы. Почвы предгорий Алтая характеризуются достаточно высоким плодородием.

В лесостепи Алтайского края основу земледелия составляют чернозёмные почвы, поэтому зональная технология возделывания гречихи, в первую очередь, должна увязываться с ними

[1; 2]. Наши исследования показали, что применение удобрений положительно влияет на урожайность культуры. В среднем за 3 года (2009-2011) прибавка урожая по вариантам опыта с удобрениями существенно изменялась. Максимальные показатели отмечены при внесении двойной нормы удобрений $N_{60}P_{60}K_{60}$ (NPK₂) на всех изучаемых сроках сева гречихи – от 0,17 до 0,54 т/га (21 и 68%). Однако материальные затраты в этом случае возрастали по сравнению с вариантом (NPK₁) и не окупались прибавкой урожая. Поэтому норму удобрений $N_{30}P_{30}K_{30}$ (NPK₁) можно отнести к наиболее эффективной, средняя урожайность зерна по срокам посева здесь составляла 0,95–1,30 т/га.

Изучение сроков сева гречихи говорит о том, что лучшая прибавка урожая получена при посеве 5-10.06-0,27-0,54 т/га (34-68%) в зависимости от нормы удобрений. Другие сроки не эффективны. Достоверная прибавка урожая зерна гречихи на лучшем фоне удобрений NPK₁ в данном случае максимальная -0,51 т/га, а средняя урожайность составила 1,30 т/га.

Анализируя эффективность междурядий за годы исследований (2009-2011), можно отметить преимущество широкорядного способа посева гречихи (0,45 м) при всех изучаемых нормах высева. На данных вариантах сформирована самая высокая прибавка урожая – от 0,22 до 0,38 т/га (21-36%). Средняя урожайность здесь получена на уровне 1,26–1,42 т/га, по годам она существенно варьировала в связи со сложившимися погодными условиями – от 1,08 т/га в 2010 г. до 1,69 т/га в 2011 г.

Изучение норм высева говорит о преимуществе таковых в количестве 3,5 млн всх. зёрен на 1 га на всех изучаемых способах посева. Прирост урожая следующий: на варианте 2,5 млн зёрен – от 0,13 до 0,22 т/га (12-21%), на варианте 3,5 млн зёрен – от 0,16 до 0,38 т/га (15-36%), на варианте 4,5 млн зёрен – от 0,09 до 0,24 т/га (9-23%). Таким образом, исследования говорят о высокой эффективности широкорядного посева гречихи (0,45 м) нормой 3,5 млн всх. зёрен на 1 га, где урожайность зерна лучшая – 1,42 т/га.

Некорневые подкормки в лесостепи Алтая также являются важным элементом агротехники, поскольку урожай зерна на всех вариантах опыта с подкормкой при опылении достаточно высокий и по годам исследований (2010-2012) изменялся от 1,21 до 2,16 т/га. Лучшая урожайность в среднем за 3 года получена при подкормке в начале бутонизации – 1,65-1,84 т/га в зависимости от уровня опыления. Варианты без подкормки имели меньшую и в то же время контрастную урожайность – от 0,29 т/га на контроле и до 1,43-1,47 т/га – на вариантах с опылением.

Учёты урожая зерна в среднем за 3 года показали, что без опыления гречихи медоносными пчёлами, когда к цветкам имели доступ только дикие насекомые-опылители, урожайность не превышала 0,46 т/га. Опыление растений пчёлами способствовало росту

выхода зерна до 1,65-1,71 т/га, совместное опыление и доопыление повышало урожайность – до 1,84-1,89 т/га.

Эффективность возделывания гречихи посевной в лесостепи Алтайского края повышается в том случае, если в результате применяемых агротехнических приёмов отмечается экономически оправданная прибавка урожая [1]. В результате повышения закупочных цен на гречиху она стала рентабельной, экономически выгодной, способной давать высокие доходы.

Выход зерна является обобщающим показателем, суммирующим вклад технологических и природных факторов. Однако величина урожая не позволяет объективно судить об экономике производства зерна гречихи. Поэтому для обоснования целесообразности конкретного агротехнического приёма или технологии в целом необходим правильный выбор оценочных критериев [6].

При экономической оценке возделывания гречихи посевной нами учитывались затраты по всем операциям при посеве, уходе за растениями и уборке. В результате была определена себестоимость, условно-чистый доход и рентабельность производства зерна. Затраты подсчитаны согласно технологическим картам с учётом расценок, сложившихся в 2011 г. Цена реализации продукции — 15 тыс. руб/т.

Следует отметить, что основные затраты на возделывание гречихи посевной слагаются за счёт трех показателей: удобрений (1800 руб./га), амортизации (1160 руб./га и более), нефтепродуктов (700 руб./га и более). Расчёты показали, что на чернозёмах лесостепи Алтайского края экономически выгодней использовать норму высева 3,5 млн всх. зёрен на 1 га при широкорядном посеве (0,45 м). Затраты на производство зерна гречихи в этом случае составляют 5286 руб./га, а себестоимость 1 т зерна самая низкая – 3722 руб. Условно-чистый доход на этом варианте (16014 руб./т) оказался больше, рентабельность лучшей – 303%, что на 15% выше по сравнению с вариантом (0,60 м). В целом выращивание гречихи на продовольственное зерно в лесостепи экономически оправданно, так как даже на контроле рентабельность превысила 200% (табл. 1).

Таблица 1 – Экономическая эффективность возделывания гречихи (в среднем за 2009-2011 гг.)

Вариант	Урожайность, т/га	Себестоимость 1 т продукции, руб.	Условно- чистый доход с 1 т, руб.	Рентабельность, %			
2,5 млн всх. зёрен на 1 га							
Рядовой (контроль)	1,04	4637	10777	223			
Широкорядный (0,45 м)	1,26	4061	13783	269			

Широкорядный (0,60 м)	1,22	4141	13248	262		
3,5 млн всх. зёрен на 1 га						
Широкорядный (0,45 м)	1,42	3722	16014	303		
Широкорядный (0,60 м)	1,35	3867 15030		288		
4,5 млн всх. зёрен на 1 га						
Широкорядный (0,45 м)			13779	254		
Широкорядный (0,60 м)	1,26	4246	13550	253		

В решении проблем рационального природопользования значительная роль принадлежит учёту энергозатрат, что особенно важно в условиях дефицита энергетических ресурсов, необходимости их экономии и рационального использования в земледелии Алтайского края [1].

Сравнение энергетической эффективности приёмов возделывания гречихи в наших опытах показало, что наиболее существенные различия характерны для норм высева. Так, минимальные затраты совокупной энергии получены на контроле — 10250,3 МДж/га при норме 2,5 млн всх. зёрен на 1 га. С увеличением нормы высева затраты энергии возрастали и достигали максимальных значений — 12114,0 МДж/га на вариантах с нормой высева 4,5 млн всх. зёрен на 1 га. Лучшее содержание валовой энергии в урожае зерна гречихи отмечено на широкорядном посеве (0,45 м) при норме высева 3,5 млн всх. зёрен на 1 га — 23628,8 тыс. МДж/га, на этом же варианте получена самая низкая энергоёмкость зерна — 7912,7 МДж/т.

При незначительно различающихся затратах совокупной энергии широкорядный способ посева гречихи (0,45 м) с нормой высева 3,5 млн всх. зёрен на 1 га, по сравнению с другими вариантами опыта, обеспечивает больший прирост валовой энергии — 12392,4 МДж/га и более высокий энергетический коэффициент — 2,10, что является лучшим показателем в сравнении с другими вариантами опытов (табл. 2).

Таблица 2 – Энергетические показатели возделывания гречихи в зависимости от способа посева и нормы высева (средние за 2009-2011 гг.)

Вариант	Урожай- ность, т/га	Затраты совокупной энергии, МДж/га	Содержание валовой энергии в урожае, МДж/га	Прира- щение валовой энергии, МДж/га	Энерго- ёмкость 1 т зерна, МДж	Энергети- ческий коэффи- циент
Норма высева 2,5 млн всх. зёрен на 1 га						
Рядовой (контроль)	1,04	10250,3	17305,6	7055,3	9855,7	1,69

Широкорядный (0,45 м)	1,26	10389,5	20966,4	10576,9	8245,2	2,01
Широкорядный (0,60 м)	1,22	10367,3	20300,8	9933,5	8497,5	1,96
Норма высева 3,5 млн всх. зёрен на 1 га						
Широкорядный (0,45 м)	1,42	11236,4	23628,8	12392,4	7912,7	2,10
Широкорядный (0,60 м)	1,35	11195,1	22464,1	11269,0	8292,6	2,01
Норма высева 4,5 млн всх. зёрен на 1 га						
Широкорядный (0,45 м)	1,28	12114,0	21299,2	9185,2	9464,1	1,76
Широкорядный (0,60 м)	1,26	12102,3	20966,4	8864,1	9604,8	1,73

Таким образом, энергетически целесообразно в лесостепи Алтайского края применять широкорядный (0,45 м) посев в первой декаде июня (0.5-10.06) нормой высева 3,5 млн всх. зёрен на 1 га.

Внедрение результатов научных исследований проводилось нами в 2011-2012 гг., совместно с главным агрономом В.А. Вишняковым, в крестьянско-фермерском хозяйстве ПТ «Цалис и К» Целинного района Алтайского края. Хозяйство является передовым, гречиху здесь выращивают ежегодно на 300-500 га с урожайностью 1,0 т/га и более. От реализации зерна гречихи хозяйство ежегодно получает 3-5 млн руб. и больше прибыли, при этом рентабельность выращивания гречихи здесь выше, чем пшеницы. От внедрения в производство наших предложений получен хороший экономический эффект – 7,91-11,28 тыс. руб. на 1 га чистого дохода.

Выводы. Существенные резервы ресурсосбережения при возделывании гречихи посевной в Алтайском крае заключаются в совершенствовании агротехнических приёмов.

В условиях лесостепи Алтайского края близкой к оптимальной норме минеральных удобрений гречихи можно считать $N_{30}P_{30}K_{30}$, лучше всего биологическим особенностям культуры отвечает посев в 1-й декаде июня. Урожайность зерна в этом случае составляет $1.30\ \mathrm{T/ra}$.

Наиболее целесообразным способом посева гречихи является широкорядный (0,45 м) с нормой высева 3,5 млн всх. зёрен на 1 га, что позволяет получить 1,42 т/га зерна.

Максимальная урожайность зерна в среднем за 3 года сформировалась при подкормке гречихи в начале бутонизации в комплексе с опылением пчёлами и искусственном доопылении цветков – 1,84 т/га.

Выращивание гречихи в лесостепи Алтая с применением широкорядного способа посева (0,45 м), нормой высева 3,5 млн всх. зёрен на 1 га свидетельствует о высокой экономической и энергетической эффективности.

Разработанные агротехнические приёмы позволяют существенно снизить себестоимость зерна, увеличить рентабельность производства и снизить энергетические затраты.

Данные, приведенные в статье, получены при выполнении темы НИР: «Формирование высокопродуктивных агрофитоценозов сельскохозяйственных культур в условиях лесостепи Алтайского края на основе опылительной деятельности медоносных пчел», номер госрегистрации 01.2.00 9 51435.

Список литературы

- 1. Важов В.М., Козил В.Н., Одинцев А.В. Гречиха в лесостепи Алтая : монография. Бийск, 2012. 204 с.
- 2. Важов В.М., Одинцев А.В., Козил В.Н. Эффективность возделывания полевых культур в Алтайском регионе // Успехи современного естествознания. 2012. № 3. С. 49-50.
- 3. Информация Алтайкрайстата. № 22-16 от 20.11.2012. 3 с.
- 4. Олешко В.П., Яковлев В.В., Шукис Е.Р. Полевое кормопроизводство в Алтайском крае: состояние, проблемы и пути их решения : монография. Барнаул : Азбука, 2005. 319 с.
- 5. Фесенко А.Н., Мартыненко Г.Е., Селихов С.Н. Производство гречихи в России: состояние и перспективы // Земледелие. -2012. -№ 5. С. 12-14.
- 6. Цветков М.Л. Урожайность культур и экономическая эффективность звеньев севооборотов в условиях Приобья Алтая // Вестник Алтайского государственного аграрного университета. -2012. № 2 С. 18-28.

Рецензенты:

Часовских В.П., д-р с.-х. наук, профессор кафедры общего земледелия, растениеводства и защиты растений ФГБОУ ВПО «Алтайский государственный аграрный университет», г. Барнаул.

Яськов М.И., д-р с.-х. наук, профессор, зав. лабораторией экологии аридных территорий Горно-Алтайского государственного университета ФГБОУ ВПО «Горно-Алтайский государственный университет», г. Горно-Алтайск.