ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ РЕЗУЛЬТАТИВНОСТИ МОДЕРНИЗАЦИОННЫХ ПРЕОБРАЗОВАНИЙ

Бараков В. С.

ФГБОУ ВПО «Волгоградский государственный университет», Волгоград, Россия (400062, Волгоград, пр. Университетский, 100), e-mail: vlbarakov@mail.ru

В статье рассмотрены подходы к построению многофакторной оценки результативности модернизационных преобразований, позволяющие проанализировать взаимосвязь исследуемых факторов и прогнозировать развитие исследуемого объекта. Смоделирована эконометрическая модель многофакторной оценки влияния различных факторов на сальдированный финансовый результат в расчете на 1 руб. инвестиций в основной капитал, основанная на применении корреляционного и регрессионного анализа. Проводится поэтапный регрессионный анализ оценки результативного показателя «сальдированный финансовый результат в расчете на 1 руб. инвестиций в основной капитал» по всем макрорегионам РФ за период с 2000 по 2011 г., включающий: отбор показателей, корреляционный анализ их взаимозависимости, проверка значимости, как отдельных коэффициентов, так и полученного уравнения множественной регрессии в целом. Сформулирована экономическая интерпретация полученных результатов.

Ключевые слова: экономическое развитие, оценка, инвестиции, регион, корреляционный анализ, регрессионный анализ, результативность модернизационных преобразований.

ECONOMETRIC MODEL OF PRODUCTIVITY OF MODERNIZATION TRANSFORMATIONS

Barakov V. S.

Volgograd state university, Volgograd, Russia (400062, Volgograd, Universitetsky Ave., 100), e-mail: vlbarakov@mail.ru

In article approaches to creation of a multiple-factor assessment of productivity of the modernization transformations, allowing to analyse interrelation of studied factors and to predict development of studied object are considered. The econometric model of a multiple-factor assessment of influence of various factors on balanced financial result counting on 1 rub of investments into the fixed capital, based on application of the correlation and regression analysis is simulated. The stage-by-stage regression analysis of an assessment of a productive indicator "balanced financial result counting on 1 rub of investments into fixed capital" on all macroregions of the Russian Federation from 2000 on 2011 is carried out. the including: selection of indicators, the correlation analysis of their interdependence, importance check, both separate coefficients, and the received equation of multiple regression as a whole. Economic interpretation of the received results is formulated.

Keywords: economic development, assessment, investments, region, correlation analysis, regression analysis, productivity of modernization transformations.

Введение

Определение потенциала экономического развития регионов является одной из важнейших задач региональной экономики. Данный процесс во многом зависит от инвестиций, которые осуществляются в региональной хозяйственной системе. Для выявления тенденций модернизационных преобразований в России в макрорегиональном срезе возможно применение эконометрических методов анализа [1, 3]. Особый интерес представляет оценка влияния факторов на эффективность инвестиционных процессов в макрорегионе (МР). Решение этой задачи требует определения результирующего показателя, характеризующего эффективность инвестиционных процессов. Здесь речь идет о процессах инвестирования средств в основной капитал.

Результаты и обсуждения

Отношение финансового результата к инвестициям в основной капитал по MP отражает совокупную эффективность инвестиционных процессов. В таком случае получится своего рода обобщающий индикатор, позволяющий оценивать отдачу вложенных в основной капитал средств, а эффект выражается совокупным (сальдированным) финансовым результатом.

В соответствии с методологическими пояснениями российского статистического ведомства «сальдированный финансовый результат (прибыль минус убыток) представляет собой сумму прибыли (убытка) от продажи товаров, продукции (работ, услуг), основных средств, иного имущества организаций и доходов от внереализационных операций, уменьшенных на сумму расходов по этим операциям» [7]. Другими словами, сальдированный финансовый результат регионов и макрорегионов страны, являющийся частью прибавочного продукта, является важным обобщающим показателем их производственно-хозяйственной деятельности. В частности, Б. Плышевский при анализе возможностей самофинансирования инвестиций, в качестве показателя прибыли использует сальдированный финансовый результат [5].

Оценка эффективности инвестиционных процессов в MP, входящих в состав ФО РФ, является актуальной проблемой. Уровень эффективности процессов инвестирования средств в основной капитал является интегральной характеристикой и определяется достаточно большим множеством факторов. Построение такого показателя в рамках детерминированных моделей затруднительно. Наш подход основан на применении линейной модели множественной факторной регрессии. Зависимой, обобщающей переменной мы предлагаем использовать отношение сальдированного финансового результата к объему инвестиций в основной капитал [8].

Многофакторная модель строится в соответствии с функциональной зависимостью типа:

$$Y = f(x_1, ..., x_{12}, \varepsilon),$$
 (1)

Y — сальдированный финансовый результат в расчете на 1 руб. инвестиций в основной капитал, %;

 x_1 – уровень безработицы (%);

 x_2 — доля инвестиции в основной капитал организаций с участием иностранного капитала (%);

 x_3 – уровень экономической активности населения (%);

 x_4 – индекс промышленного производства (в % к предыдущему году);

 x_5 – удельный вес убыточных организаций (в % от общего числа организаций);

- x_6 степень износа основных фондов, %;
- x_7 инвестиции в основной капитал на душу населения (тыс. руб.);
- x_8- индекс физического объема инвестиций в основной капитал (в % к предыдущему году);
 - x_{0} удельный вес инвестиций в основной капитал в валовом региональном продукте;
- x_{10} доля собственных средств в источниках финансирования инвестиций в основной капитал, %;
- x_{11} доля банковских кредитов в привлеченных источниках финансирования инвестиций в основной капитал, %;
- x_{12} доля бюджетных средств в привлеченных источниках финансирования инвестиций в основной капитал, %;
 - ε случайная составляющая.

Исходная система данных рассчитана по восьми MP России за 2000–2011 гг. Значения признаков-показателей были отобраны на основе статистических сборников: «Регионы России – 2005», «Регионы России – 2010» «Регионы России – 2012» и данных единой межведомственной информационно-статистической системы – http://www.fedstat.ru/indicators/start.do [6, 7].

Обработка собраной аналитической информации проводится с помощью корреляционного и регрессионного анализа [2]. Корреляция характеризует меру зависимости переменных между собой. Коэффициенты корреляции изменяются в пределах от -1.00 до +1.00. Значение -1.00 означает полностью отрицательную корреляцию, значение +1.00 означает полностью положительную корреляцию. Значение 0.00 означает отсутствие корреляции. Две переменные могут быть связаны таким образом, что при возрастании значений одной из них значения другой убывают. Это и показывает отрицательный коэффициент корреляции. Про такие переменные говорят, что они отрицательно коррелированны.

Связь между двумя переменными может быть следующей, когда значения одной переменной возрастают, значения другой переменной также возрастают. Это и показывает положительный коэффициент корреляции. Про такие переменные говорят, что они положительно коррелированны. Наиболее часто используемый коэффициент корреляции Пирсона r называется также линейной корреляцией, т.к. измеряет степень линейных связей между переменными.

Общее назначение множественной регрессии состоит в анализе связи между несколькими независимыми переменными и зависимой переменной. Информация о наличии

такой связи может быть использована при анализе множественной регрессии, для построения регрессионного уравнения [3, 9]. Когда определено уравнение регрессии, аналитик может построить график ожидаемого изменения величины зависимой переменной.

Описанный выше метод используется в исследовании для анализа корреляционной зависимости 12 факторов, предположительно влияющих на итоговый показатель – сальдированный финансовый результат в расчете на 1 руб. инвестиций в основной капитал.

Корреляционная матрица независимых факторных признаков показывает, что они слабо коррелируют между собой, и поэтому с применением метода пошаговой регрессии появляется возможность построить значимую модель линейной регрессии (см. табл. 1).

Таблица 1 Корреляционная матрица независимых факторных признаков

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_{g}	x_{10}	x_{11}	x_{12}
x_1	1											
x_2	-0,49	1										
x_3	-0,74	0,44	1									
x_4	0,04	0,10	-0,13	1								
x_5	0,33	-0,06	-0,34	0,08	1							
x_6	0,10	-0,47	-0,16	-0,14	0,05	1						
x_7	-0,39	0,12	0,67	-0,18	-0,51	-0,11	1					
x_8	-0,01	0,12	-0,06	0,31	-0,03	-0,11	-0,11	1				
x_9	0,37	-0,09	-0,08	-0,02	-0,31	-0,16	0,42	0,02	1			
x_{10}	-0,13	-0,24	-0,06	-0,09	0,28	0,48	-0,20	0,02	-0,57	1		
x_{11}	-0,27	0,15	0,30	-0,19	-0,52	-0,16	0,26	-0,21	0,10	-0,20	1	
x_{12}	0,25	-0,29	-0,13	0,08	-0,15	-0,11	-0,16	-0,05	0,09	-0,54	0,18	1

Для получения регрессионного уравнения необходимо провести ступенчатый отсев регрессоров. Процесс повторяется до тех пор, пока не останутся только значимые регрессоры.

В результате получено следующее уравнение множественной регрессии следующего вида:

$$Y = 259, 2-1, 4x_5 + 0, 3x_7 + 0, 3x_8 - 6, 1x_9 - 0, 8x_{10} - 1, 7x_{11}$$
 (2)

Коэффициенты регрессионной модели на заданном уровне значимы.

Статистические оценки модели и ее параметров оказались полностью состоятельными (рис. 1):

Statistic	Value
Multiple R	0,79305
Multiple R?	0,62893
Adjusted R?	0,60391
F(6,89)	25,14084
р	0,00000
Std.Err. of Estimate	28,52914

Рис. 1. Параметры оценки регрессионной модели

R – коэффициент множественной корреляции (описывает степень линейной зависимости между Y и факторами);

F- F – статистика;

р – вычисленный уровень значимости модели.

Коэффициент множественной корреляции показывает, что 79,3 % суммарной вариации результирующего показателя объясняется вариабельностью включенных в модель факторов. О неслучайной природе полученных значений коэффициентов регрессии свидетельствуют их стандартные ошибки. В наших расчетах принят 5 %-й (p = 0.05) уровень вероятности ошибки. В модели расчетные значения стандартных ошибок для всех коэффициентов регрессии меньше задаваемого уровня.

Из рис. 1 видно, что статистика критерия Фишера равна F(6,89)=25,14. Так как p=0,0000, что меньше, чем $\alpha=0,05$, то гипотеза о незначимости модели отклоняется.

11 2		1	1	
На рисунке 2	представлен	фрагмент	графика	остатков:

		Raw F	Residu	als			Residual	Standard	Standard
Case	-3s		0			+3s		Pred. v.	Residual
	25 .		* .				-14,7427	-1,02025	-0,48012
	26 .	. 7	٠.	•			-18,5125	-0,93830	-0,60288
	27 .		*.	•			-9,5751	-0,94079	-0,31183
	28 .	. *		•			-23,3621	-0,74619	-0,76082
	29 .	. 7	٠.	•	•		-17,9269	-0,69447	-0,58381
	30 .		* .				-15,5861	-0,60126	-0,50758
	31 .		* .				-10,3361	-0,47452	-0,33661
	32 .		* .				-16,1533	-0,16277	-0,52605
	33 .		* .				-11,7884	0,08098	-0,38391
	34 .		*.				-9,6954	0,05609	-0,31574
	35 .		*				0,4331	0,16226	0,01410
	36 .		. *				3,9221	0,43764	0,12773
	37 .		. *				10,8051	-1,34774	0,35188
	38 .		. *				5,2794	-1,27095	0,17193
	39 .			* .			21,0724	-1,36355	0,68625
	40 .			*			33,4180	-1,42534	1,08830

Рис. 2. График остатков

Все остатки укладываются в симметричную относительно нулевой линии полосу шириной $\pm 2S$. Это означает, что, по-видимому, дисперсии ошибок наблюдений постоянны.

Из графика видно, что точки расположены близко к прямой, значит, можно предположить, что остатки распределены по нормальному закону. Таким образом, можно считать, что предположения регрессионного анализа выполняются.

Таблица 2.3 Приоритеты факторных признаков по степени их влияния на эффективность инвестиционных процессов в MP России

<u>№</u>	Изучаемый признак	Сравнительная сила влияния факторного признака	Экономическое содержание действия факторного признака
1	x_5 – Удельный вес убыточных организаций (в % от общего числа организаций)	-1,4	Увеличение доли убыточных предприятий и организаций в общей их численности существенно снижает эффективность инвестиционных процессов и выражается в снижении суммарного прибавочного продукта
2	x_7 – Инвестиции в основной капитал на душу населения (тыс. руб.)	0,3	Наращивание инвестиционных средств в основной капитал способствует росту прибыльности производства в макрорегионах страны
3	x_8 — Индекс физического объема инвестиций в основной капитал (в % к предыдущему году)	0,3	Высокие темпы роста объема инвестиций выступают гарантом повышения результативности модернизационных процессов в МР
4	x_9 — Удельный вес инвестиций в основной капитал в валовом региональном продукте	-6,1	Слабая активность инвестиционных средств в доли ВРП приводит к снижению совокупного финансового результата предприятий и организаций
5	x_{10} — Доля собственных средств в источниках финансирования инвестиций в основной капитал, %	-0,8	Слабая активность вложения собственных средств в инвестиционных процессах заметно снижает эффективность производства
6	x_{11} — Доля банковских кредитов в привлеченных источниках финансирования инвестиций в основной капитал, %	-1,7	Слабая активность банковской системы в инвестиционных процессах заметно снижает эффективность производства

Таким образом, полученное уравнение множественной регрессии (2) показывает высокую тесноту связи между эффективностью инвестиционных процессов по MP России и выделенными приоритетными признаками-показателями. Об этом свидетельствуют высокое значение коэффициента множественной корреляции, превышающего критический его уровень (0,7), и коэффициент детерминации.

По величине коэффициентов при факторных признаках уравнения регрессии (2) представляется возможным выделить приоритеты изучаемых факторов по степени их влияния на эффективность процессов инвестирования средств в основной капитал.

Полученные результаты приведены в табл. 2.3, в которой приоритетность факторовпризнаков ранжируется в соответствии со значениями коэффициентов регрессии, позволяющих определить степень их влияния на уровень показателя «финансовый результат / инвестиции в основной капитал», отражающего динамику эффективности инвестиционных процессов в российской экономике в срезе ее крупных макрорегионов, интегрированных в рамках федеральных округов. При этом следует заметить, что приведенное в табл. 2.3 экономическое содержание факторов служит для описания имевших за анализируемую динамику место тенденций в распределении и использовании инвестиций в основной капитал по макрорегионам России.

Заключение

На основе проведенного факторного исследования динамики инвестиций в МР можно сформулировать следующие основные выводы по России:

- 1. Уравнение линейной множественной регрессии (2), его аналитическое качество, подтверждаемое высоким значением множественного коэффициента корреляции $R_{MHOЖ.}=0.79$, а также отмеченные выше статистически состоятельные оценки параметров модели показывают, что эффективность процессов инвестирования средств в основной капитал в России имеет высокую тесноту связи с выделенными приоритетными факторными признаками. Кроме того, на основе полученной регрессионной модели выявлен ряд важных тенденций в динамике инвестирования средств в Φ О России.
- 2. На увеличение совокупной чистой прибыли предприятий и организаций России в MP срезе в результате инвестирования средств в основной капитал наибольшее *положительное* влияние оказывали следующие два фактора:
- инвестиции в основной капитал на душу населения (тыс. руб.);
- индекс физического объема инвестиций в основной капитал (в % к предыдущему году).
- 3. На уровень эффективности инвестиционных процессов в России *негативное влияние оказывали*:
- слабая инвестиционная активность банков и собственных средств, выражавшаяся в малой доле долгосрочных инвестиционных кредитов в активных операциях, что в значительной мере было обусловлено ограниченностью долгосрочных пассивов кредитных организаций страны;
- большая доля убыточных предприятий и организаций в общей их численности, что существенно снижает эффективность инвестиционных процессов и выражается в снижении суммарного прибавочного продукта.

Список литературы

- Буянова М. Э. Оценка риска социально-экономического развития регионов Юга России (факторный подход) // Вестник Волгоградского государственного университета. Серия 3. Экономика. Экология // Научно-теоретический журнал. Волгоград: Изд-во ВолГУ. № 1(20). 2012. С. 85–94.
- 2. Вуколов Э. А. Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTICA и EXCEL: Учебное пособие / Э. А. Вуколов. М: ФОРУМ: ИНФРА-М, 2004. С. 160.
- 3. Дегтярева Т. Д., Буреш О. В., Чепасов В. Статистический анализ транспортного комплекса региона на основе регрессионных моделей / Т. Д. Дегтярева, О. В. Буреш, В. Чепасов // Вопросы статистики. 2003. № 8. С. 65–67.
- 4. Калинина А. Э., Калинина В. В. Многофакторная оценка состояния промышленности регионов Южного федерального округа (ЮФО) // Современные проблемы науки и образования. 2012. № 5.
- 5. Плышевксий Б. О промышленной политике // Экономист. 2004. N 9. С. 9.
- 6. Регионы России. Социально-экономические показатели. 2010: Стат. сб. / Росстат. М. Режим доступа http://www.gks.ru/bgd/regl/B05_14p/Main.htm.
- 7. Регионы России. Социально-экономические показатели. 2012: Стат. сб. / Росстат. М., 2012. 990 с.
- 8. Читая Γ . О. Источники инвестиционного обеспечения экономического развития макрорегионов России // Вопросы статистики. -2005. № 9. С. 34-43.
- 9. Юзбашев М. М. Расчет объема выборки для надежного установления связи / М. М. Юзбашев // Вопросы статистики. -2004. -№ 6. C. 38–39.

Рецензенты:

Мосейко В. О., д-р экон. наук, профессор, директор института управления и региональной экономики, ФГАОУ ВПО «Волгоградский государственный университет», г. Волгоград. Буянова М. Э., д-р экон. наук, профессор кафедры мировой и региональной экономики, ФГАОУ ВПО «Волгоградский государственный университет», г. Волгоград.