ИССЛЕДОВАНИЕ МЕХАНИЗМОВ ПРОВОДИМОСТИ КОМПОЗИЦИОННЫХ НАНОМАТЕРИАЛОВ НА ОСНОВЕ МНОГОСЛОЙНЫХ ПЛЁНОЧНЫХ СТРУКТУР ТА205/TIO2

Плотников В.В.¹, Дроздовский А.В.¹, Шишмакова Г.А.²

¹ФБГОУ ВПО «Санкт-Петербургский Государственный электротехнический университет им. В.И.Ульянова-Ленина (СПбГЭТУ)», Санкт-Петербург, Россия (197376, Россия, Санкт-Петербург, улица Профессора Попова, дом 5), e-mail: <u>vivatrubin@yahoo.com</u>

²ОАО НИИ «Феррит-Домен», Санкт-Петербург, Россия (196084, Россия, Санкт-Петербург, улица Цветочная, дом 25, корпус 3), e-mail: <u>domen@domen.ru</u>

Методом реактивного магнетронного распыления на постоянном токе были синтезированы плёнки Ta_2O_5 (оксид тантала), TiO₂ (оксид титана) и гетероструктуры Ta_2O_5/TiO_2 . На все плёнки тем же методом были осаждены металлические электроды для создания плёночных конденсаторов. По данным спектроскопии были найдены оптические характеристики плёнок: показатель преломления, $n \sim 2.2$; коэффициент пропускания, $T \sim 70\%$; ширина оптической щели, $E \sim 4.2$ эВ. По измерениям вольтфарадных характеристик были найдены значения диэлектрической проницаемости, $\varepsilon \sim 32$ (для TiO_2), 25 (для Ta_2O_5) и 30 (для Ta_2O_5/TiO_2). По измерениям вольтамперных характеристик были найдены значения пробоя), $E_{bd} \sim 2$ MB/см и плотности токов утечки при нулевом смещении, $J \sim 10^9$ A/cm². Проведен анализ вольтамперных характеристик в температурном диапазоне (BAXT) на выявление природы токов утечки в диэлектриках. Были обнаружены следующие механизмы проводимости, формирующие токи утечки в диэлектриках: эмиссия Шоттки, полевая эмиссия с ловушек, туннелирование Фаулера-Нордгейма. Также было обнаружено и проанализировано влияние нагрева на токи утечки в диэлектриках. Были значения энергии активации, $\omega \sim 0.39$ эВ и глубины залегания ловушек, $\varphi_t \sim 0.36$ эВ.

Ключевые слова: оксид тантала, оксид титана, магнетронное распыление, диэлектрик.

INVESTIGATION OF LEAKAGE CURRENT MECHANISMS IN COMPOSITE NANOMATERIALS BASED ON TA205/TIO2 MULTILAYER FILM STRUCTURES

Plotnikov V.V.¹, Drozdovskii A.V.¹, Shishmakova G.A.²

¹Saint Petersburg Electrotechnical University "LETI", Saint-Petersburg, Russia (197376, Saint-Petersburg, street Pr. Popova, 5), e-mail: <u>vivatrubin@yahoo.com</u>

²Ferrite Domen Co., Saint-Petersburg, Russia (197376, Saint-Petersburg, street Tsvetochnaya, 25, build 3), e-mail: <u>domen@domen.ru</u>

DC reactive magnetron sputtered Ta₂O₅ (tantalum oxide), TiO₂ (titanium oxide) thin films and Ta₂O₅/TiO₂ heterostructures were systematically studied on leakage current mechanisms. Shottky emission, field emission and Fowler-Nordheim tunneling were identified as dominant mechanisms for Ta₂O₅/TiO₂ capacitors. Temperature-dependent current-voltage characteristics suggest thermionic activation of charge carries from Ta₂O₅/TiO₂ hope levels that's why was observed increasing of leakage current densities with heat treatment. By spectroscopic measurements were found Ta₂O₅/TiO₂ optical properties: refractive index, $n \sim 2.2$; transmission coefficient, $T \sim 70\%$; optical bandgap, $E_{bg} \sim 4.2$ eV. By capacitance-voltage and current-voltage measurements were found Ta₂O₅/TiO₂ dielectric properties: dielectric constant, $k \sim 32$ for TiO₂, 25 for Ta₂O₅ and 30 for Ta₂O₅/TiO₂; dielectric strength (also known as breakdown voltage), $E_{bd} \sim 2$ MV/cm; leakage current density at zero bias, $J \sim 10^{-9}$ A/cm².

Keywords: tantalum oxide, titanium oxide, magnetron sputtering, high-k dielectric

Введение

Начиная со времён привлечения высоко диэлектрических материалов в технологию создания КМОП-транзисторов (70-80 гг. ХХ в.) и по сей день является актуальным исследование электрофизических свойств и технологий осаждения плёнок Ta₂O₅. Интерес к плёнкам Ta₂O₅ был вызван в связи с возможностью замены широко известного оксида

кремния в качестве подзатворного диэлектрика МОП-структур. На сегодняшний день не пропал интерес попыток применения таких плёнок в качестве диэлектрических слоёв плёночных конденсаторов для изготовления ячеек оперативной памяти, изолирующих слоёв полевых транзисторов. Возрос интерес использования как чистой плёнки Ta_2O_5 , так и двухслойной структуры Ta_2O_5/TiO_2 в качестве биполярного транзистора в будущем поколении резистивной памяти [5].

Цель исследования

Анализ механизмов проводимости в плёночных конденсаторах с гетероструктурой Ta₂O₅/TiO₂ посредством снятия вольтамперных характеристик в температурном диапазоне (BAXT) от 300 до 400 К.

Материал и методы исследования

Аморфные оксидные плёночные структуры с одиночными слоями Ta₂O₅, TiO₂ и гетероструктуры Ta₂O₅/TiO₂ были осаждены на металлические подложки и кварц методом реактивного магнетронного распыления на постоянном токе в двухкомпонентной газовой среде (Ar + O₂). На все структуры методом магнетронного распыления были нанесены металлические электроды площадью $S = 0.44 \text{ cm}^2$. Для гетероструктур Ta₂O₅/TiO₂ по данным спектроскопии в видимом диапазоне длин волн были найдены $n \sim 2.2$, $T \sim 70\%$; по данным спектроскопии в ультрафиолетовой области была найдена ширина оптической щели $E \sim 4.2$ эВ. Оптические константы во всех случаях соответствовали стехиометричности Ta₂O₅ и TiO₂. С помощью стенда для измерения вольт-фарадных характеристик были найдены значения $\varepsilon \sim 32$ для TiO₂, 25 для Ta₂O₅ и 30 для Ta₂O₅/TiO₂ (при стандартной частоте измерения 1 МГц). С помощью стенда для измерения ВАХТ были найдены значения $E_{bd} \sim 2$ MB/см и $J \sim 10^{-9}$ A/сm².

Результаты исследования и их обсуждение

Механизмы проводимости. Природа токов утечки является ключевым вопросом в изучении электропроводности диэлектрических слоёв. Из полученных ВАХ плёночных конденсаторов, построенных в соответствующих координатах, можно судить о некоторых механизмах проводимости, обуславливающих токи утечки. Обнаружение этих механизмов проводимости в некоторой степени объясняет физическую суть зависимости токов утечки от внешнего воздействия (приложенного напряжения, нагрева или охлаждения и т.д.) [3].

BAXT конденсатора с гетерструктурой Ta_2O_5/TiO_2. ВАХТ осаждённых образцов, содержащих гетероструктуру Ta_2O_5/TiO_2 приведены на рис. 1.

Следует отметить экспоненциальный характер прямых ветвей ВАХТ полученных образцов, что в свою очередь говорит об отсутствии омической проводимости и свидетельствует о хорошем качестве диэлектрических слоёв. Из рисунка так же видно, что

нагрев образцов при снятии ВАХ приводит к увеличению плотностей тока утечки во всём диапазоне прикладываемых напряжений, что может быть связано с тепловым возбуждением носителей заряда.

Рис. 1. ВАХТ конденсатора с гетероструктурой Ta₂O₅/TiO₂,

измеренные при температуре: • – 300 К, ■ – 325 К, ▲ – 350 К, • – 375 К, — – 400 К. Если учесть тепловое возбуждение носителей заряда, то вероятность такого процесса пропорциональна $e^{-\frac{\omega}{kT}}$. Величина ω является энергией активации процесса возбуждения. Очевидно, что выражение, которое отразит влияние нагрева на увеличение тока в образцах плёночных структур только за счет возбуждения носителей в зону проводимости, имеет характер

$$\ln J = \frac{\omega}{kT} \,. \, (1)$$

Для выявления этого процесса линейная аппроксимация ВАХ строится в системе координат Аррениуса. Таким образом, получается зависимость вида ln J от $\frac{1}{kT}$ [1]. Значение энергии активации ω для гетероструктуры Ta₂O₅/TiO₂, полученное из аппроксимации ВАХТ в координатах Аррениуса, равно примерно 0.39 эВ. Так как энергия теплового возбуждения носителей не превышает 1 эВ, можно сделать суждение о том, что в запрещённой зоне обоих оксидов (E_g имеет порядки 3 и 4.2 эВ для TiO₂ и Ta₂O₅, соответственно) имеются занятые уровни. Эти уровни, наиболее вероятно, созданы вакансиями по кислороду. Вакансии заряжаются положительно и ведут себя как доноры.

Эмиссия Шоттки. Тепловой выброс электронов из нагретого металла называется термоэлектронной эмиссией. Эмиссия электронов из металлического контакта в вакуум или в зону проводимости диэлектрика посредством их термического переброса через

потенциальный барьер при наличии электрического поля называется эмиссией Шоттки. Ток, подчиняющийся механизму Шоттки, может быть выражен через уравнение Ричардсона-Дэшмана [2]:

$$J = AT^{2} \exp\left(\frac{1}{kT} \sqrt{\frac{q^{3}E}{4\pi\varepsilon_{0}k_{r}}}\right), \ A = C_{RD} \exp\left(\frac{\varphi_{b}}{kT}\right). (2)$$

В выражении (2) приняты следующие обозначения: J – плотность тока; T – абсолютная температура; k – постоянная Больцмана; q – заряд электрона; E – напряжённость электрического поля; ε_0 – электрическая постоянная; k_r – динамическая диэлектрическая проницаемость; C_{RD} – константа Ричардсона и φ_b – высота барьера. Для выявления этого механизма проводимости выражение (2) записывают в виде

$$\ln J = B\sqrt{E} \ (3)$$

Рис. 2. ВАХТ конденсатора с гетероструктурой Ta_2O_5/TiO_2 в координатах Шоттки, измеренные при температуре: • – 300 К, • – 325 К, ▲ – 350 К, • – 375 К, — – 400 К.

с тем учётом, что ток является функцией от поля и больше ни от чего не зависит, а экспериментальные результаты графически представляют в системе координат $\ln J$ от \sqrt{E} . В случае, если экспериментальные точки в новой системе координат хорошо аппроксимируются линейной зависимостью, можно допустить, что проводимость диэлектрика обусловлена эмиссией Шоттки.

Во всех исследованных образцах был обнаружен механизм проводимости, подчиняющийся эмиссии Шоттки. На рис. 2 представлены ВАХТ образцов с гетероструктурой Ta₂O₅/TiO₂ в координатах Шоттки.

Туннелирование Фаулера-Нордгейма. ВАХ может быть удовлетворительно описана хорошо известным выражением Фаулера-Нордгейма. Это выражение описывает в общем случае ток полевой эмиссии из металла в вакуум:

$$J = \alpha \varphi^{-1} E^2 \exp\left(-\frac{b\varphi^{\frac{3}{2}}}{E}\right), (4)$$

где $\alpha = \frac{e^3}{8\pi h}$; $b = \frac{4\sqrt{2m}}{e\hbar}$; φ – работа выхода эмиттера; e – элементарный положительный

заряд; m – эффективная масса электрона; h – постоянная Планка и $\hbar = \frac{h}{2\pi}$. Выражение (4) является уравнением Фаулера-Нордгейма в элементарной форме, предполагая простой треугольный потенциальный барьер для туннелирования вызванных полем эмитированных электронов, пренебрегая некоторыми второстепенными эффектами. Из (4) очевидно

$$\ln \frac{J}{E^2} = \ln A - \frac{B}{E}.$$
 (5)

Тем не менее, более качественное решение показывает, что если участвует барьер Шоттки, падение напряжения чаще всего происходит полностью на барьере и напряжённость электрического поля в выражениях (4) и (5) более тщательно должна быть рассчитана в соответствии с формулой

$$E = \sqrt{\frac{2N_d eU}{\varepsilon \varepsilon_0}} , (6)$$

где N_d – концентрация доноров и ε – диэлектрическая проницаемость оксида. Таким образом, для выявления этого механизма проводимости выражение (5) записывают в виде

$$\ln\frac{J}{U} = \ln A - \frac{B}{\sqrt{U}} \,. \,(7)$$

с тем учётом, что ток является функцией от поля и больше ни от чего не зависит, а экспериментальные результаты графически представляют в системе координат $\ln \frac{J}{U}$ от $\frac{1}{\sqrt{U}}$. В случае, если экспериментальные точки в новой системе координат хорошо

аппроксимируются линейной зависимостью, можно допустить, что проводимость диэлектрика обусловлена туннелированием Фаулера-Нордгейма.

Во всех исследованных образцах был обнаружен механизм проводимости, подчиняющийся туннелированию Фаулера-Нордгейма. На рис. 3 представлены ВАХТ конденсатора с гетероструктурой Ta₂O₅/TiO₂ в координатах Фаулера-Нордгейма.

Рис. 3. ВАХТ конденсатора с гетероструктурой Ta₂O₅/TiO₂ в координатах Фаулера-Нордгейма, измеренные при температуре:

● - 300 K, ■ - 325 K, ▲ - 350 K, ◆ - 375 K, — - 400 K.

Полевая эмиссия с ловушек. При больших полях или нагреве при снятии ВАХ эффект Пула-Френкеля трансформируется в ловушечное туннелирование через треугольный барьер (также известно, как полевая эмиссия с ловушек). Ток утечки, подчинённый этому механизму проводимости, может быть описан следующим выражением:

$$J = C_t E^2 \exp\left(-\frac{\alpha \varphi^{\frac{3}{2}}}{E}\right), (8)$$

где $\alpha = \frac{8\pi\sqrt{2m_{ox}q}}{3h}$ и m_{ox} – эффективная масса электрона в оксиде. Явление полевой эмиссии с ловушек может быть представлено при построении ВАХ в так называемых координатах полевой эмиссии, а результаты линейных аппроксимаций представляются в системе координат $\ln \frac{J}{E^2}$ от $\frac{1}{E}$. По сути, выражение, описывающее процесс полевой эмиссии с ловушек подобно хорошо известному туннелированнию Фаулера-Нордгейма, за исключением того, что в полевой эмиссии с ловушек стоит φ , вместо φ [4].

Во всех исследованных образцах был обнаружен механизм проводимости, подчиняющийся полевой эмиссии с ловушек. На рис. 4 представлены ВАХТ конденсатора с гетероструктурой Ta₂O₅/TiO₂ в координатах полевой эмиссии.

При анализе линейных аппроксимаций ВАХТ в координатах полевой эмиссии из выражения (8) были рассчитаны значения глубины залегания ловушек $\varphi_t \sim 0.36$ эВ, что коррелирует с данными, полученными при анализе ВАХТ в координатах Аррениуса.

Заключение

В данной работе были рассмотрены механизмы формирования токов утечки в плёночных конденсаторах с гетероструктурой Ta₂O₅/TiO₂.

Было обнаружено, что токи утечки в плёночных конденсаторах с учётом нагрева вызваны за счёт таких механизмов проводимости, как эмиссия Шоттки, полевая эмиссия с ловушек и туннелирование Фаулера-Нордгейма и за счёт теплового возбуждения носителей заряда с ловушечных уровней.

Были рассчитаны значения энергии активации процесса теплового возбуждения носителей заряда $\omega \sim 0.39$ эВ (из линейных аппроксимаций ВАХТ в координатах Аррениуса) и глубины залегания ловушек $\varphi_t \sim 0.36$ эВ (из линейных аппроксимаций ВАХТ в координатах полевой эмиссии). Таким образом, существенное увеличение токов утечки при нагреве плёночных конденсаторов главным образом обусловлено тепловым возбуждением

носителей заряда с ловушечных уровней во всём диапазоне прикладываемых напряжений в процессе снятия ВАХ.

В связи с вышесказанным, можно сделать вывод о том, что следует уделять внимание исследованию не только электрических и ёмкостных характеристик высоко диэлектрических материалов с целью интеграции последних в качестве элементов будущего поколения резистивных видов оперативных запоминающих устройств, но и влиянию нагрева в диапазоне рабочих температур конечных устройств.

Работа выполнена при поддержке гранта «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы.

Список литературы

1. Шалимова К. В. Физика полупроводников: учеб. для вузов. – М.: Энергоатомиздат, 1985. – 392 с.

2. Atanassova E., Paskaleva A. Breakdown fields and conduction mechanisms in thin Ta_2O_5 layers on Si for high density DRAMs // Microelectronics Reliability. – 2002. – Vol. 42. – P. 157-173.

3. High-k HfO₂–Ta₂O₅ mixed layers: Electrical characteristics and mechanisms of conductivity / E. Atanassova, M. Georgieva, D. Spassov [et. al] // Microelectr. Eng. – 2010. – V. 87. – P. 668-676.

4. Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta₂O₅/SiON/Si structures / M. Tapajna, A. Paskaleva, E. Atanassova [et. al] // Semicond. Sci. Technol. – 2010. – V. 25. – P. 075007.

5. Resistance Controllability of Ta_2O_5/TiO_2 Stack ReRAM for Low-Voltage and Multilevel Operation / M. Terai, Y. Sakotsubo, S. Kotsuji [et. al] // IEEE Electron Device Lett. – 2010. – V. 31. - N_2 3. – P. 204-206.

Рецензенты:

Баранов И.В., д.т.н., профессор, заместитель директора Института холода и биотехнологий ФГБОУ ВПО «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики», зав. кафедрой «Физика ИХиБТ», г.Санкт-Петербург.

Мироненко И.Г., д.т.н., профессор, профессор кафедры микрорадиоэлектроники и технологии радиоаппаратуры, ФБГОУ ВПО «Санкт-Петербургский Государственный электротехнический университет им. В.И. Ульянова-Ленина (СПбГЭТУ)», г.Санкт-Петербург.

8