ТЕПЛОПЕРЕНОС ВБЛИЗИ ИЗЛУЧАЮЩЕЙ ПОВЕРХНОСТИ ГАЗОВЫХ ИНФРАКРАСНЫХ ИЗЛУЧАТЕЛЕЙ

Кузнецов Г.В.¹, Куриленко Н.И.², Мамонтов Г.Я.³, Михайлова Л.Ю.²

Проведено экспериментальное изучение температурных полей в малой окрестности газовых инфракрасных излучателей, работающих вблизи верхней границы крупногабаритных (с характерными размерами более 10 м) моделей объектов теплоснабжения с вертикальными и горизонтальными стенками (ограждающими конструкциями) в условиях низких (-10 °C до -30 °C) температур внешней по отношению к модели среды. Установлено, что в относительно малой (до 1,5 м) по размерам области вблизи излучающей поверхности температура воздуха изменяется от максимального значения 335 °C (расстояние от излучателя 0,1 м) до 110 °C (1,5 м). Сформулирована модель, описывающая процесс теплопереноса в слое воздуха, прилегающем к газовому излучателю. Установлено, что процессы конвекции в воздухе играют важную роль в формировании тепловых режимов областей, нагреваемых за счет потока излучения.

Ключевые слова: газовые инфракрасные излучатели, конвекция, тепловые режимы.

HEAT TRANSFER NEAR THE RADIATING SURFACE OF THE GAS INFRARED EMITTERS

Kuznetsov G.V.¹, Kurylenko N.I.¹, Mamontov G.Y.¹, Mikhailova L.Y.¹

¹National research Tomsk polytechnic university, Tomsk, Russia (634050, Tomsk, av. Lenina, 30), e-mail: elf@tpu.ru ²Tyumen state architectural and construction university, Tyumen, Russia (625001, Tyumen, st. Lunocharskogo 2), e-mail: ktgv@tgasu.ru

Carried out the experimental study of temperature fields in a small neighborhood gas infrared emitters operating near the upper limit of large (with characteristic dimensions greater than 10 m) models of heating objects with vertical and horizontal walls (enclosing constructions) at low (-10 $^{\circ}$ C to -30 $^{\circ}$ C) temperatures external to the environment model. It is established that in the relatively small (to 1,5 m) according to the region dimensions near the radiating surface the air temperature changes from a maximum value of 335 $^{\circ}$ C (distance from the emitter of 0,1 m) to about 110 $^{\circ}$ C (1,5 m). Formulated a model which describes the process of heat transfer in the air layer adjacent to the gas emitters. It is established that the air convection processes play an important role in the formation of thermal regimes areas heated by the radiation flux.

Keywords: gas infrared emitters, convection, thermal conditions.

Газовые инфракрасные излучатели (ГИИ) становятся все более и более источниками перспективными энергии В системах локального теплоснабжения производственных помещений [1, 5]. Но их широкое применение сдерживается тем, что до настоящего времени не разработана теория процессов теплопереноса в областях, подвод теплоты в которые осуществляется при работе ГИИ. Последнее же во многом обусловлено отсутствием экспериментальных данных по температурным полям в зонах воздействия таких излучателей. Одним из основных при этом остается вопрос о механизме передачи энергии в воздухе при работе ГИИ.

¹Национальный исследовательский Томский политехнический университет, Томск, Россия (634050, Томск, пр. Ленина 30), e-mail: elf@tpu.ru

²Тюменский государственный архитектурно-строительный университет, Тюмень, Россия (625001, Тюмень, ул. Луночарского 2), e-mail: ktgv@tgasu.ru

³Томский государственный архитектурно-строительный университет, Томск, Россия (634050, Томск, пл. Соляная 2), e-mail: mamontov@tsuab.ru

³ Tomsk state architectural and construction university, Tomsk, Russia (634050, Tomsk, sq. Saline 2), e-mail: mamontov@tsuab.ru

Условно область теплопередачи в окрестности ГИИ может быть разделена на три зоны: основная (или рабочая), сохранение температуры воздуха в которой является целью работы излучателей; зона аккумуляции энергии ГИИ и последующего нагрева воздуха; малая окрестность работающих излучателей, в которой температура среды может быть выше предельно допустимой. До настоящего времени не опубликовано достоверных экспериментальных данных по температурным полям каждой из этих зон.

Целью настоящей работы является экспериментальное изучение закономерностей формирования температурных полей в относительно малой (с характерными размерами до 1,5 м) окрестности газового инфракрасного излучателя и обоснование физической модели теплопереноса в области, нагреваемой ГИИ.

Таблица 1 Результаты измерений температуры

Расстояние от излучающей	Температура, °С									
поверхности,	Номер эксперимента									
x,M	1	2	3	4	5	6	7	8	9	10
0,10	354	364	369	355	357	340	349	352	358	352
0,20	305	322	320	334	345	315	322	315	305	317
0,40	280	269	255	257	240	252	240	250	257	250
0,60	200	217	215	229	240	210	217	210	200	212
0,80	214	203	191	193	175	187	175	185	192	185
1,00	152	170	168	170	172	162	170	162	152	172
1,25	147	145	143	145	127	147	127	137	145	137
1,50	98	114	113	114	115	110	114	107	100	115

Экспериментальные исследования проведены на крупногабаритных (характерные размеры более 10 м) моделях объектов теплоснабжения с вертикальными и горизонтальными стенками конечной толщины (ограждающими конструкциями) в условиях низких температур (от - 10 °C до - 30 °C) во внешней по отношению к модели среде. Измерения температур воздуха выполнены в восьми точках на отрезке 1,5 м по поверхности излучения ГИИ (таблица 1). Для обеспечения достоверности результатов измерений эксперименты в идентичных условиях повторялись 10 раз (таблица 1). Измерения выполнялись в условиях установления стационарного распределения температур в области измерений.

По усредненным значениям температуры (таблица 2) вычислен коэффициент корреляции r = -0.971.

Средние значение температуры

х, м.	100	200	400	600	800	1000	1250	1500
t, °C	355	320	255	215	190	165	140	110

Для определения вида зависимости t(x) применялись методы линейного регрессионного анализа. Корреляционное поле (рис. 1) показывает, что эта зависимость близка к линейной:

$$t = b_0 + b_1 x$$

где b_1 – коэффициент регрессии.

Для определения коэффициентов b_0 , b_1 использован метод наименьших квадратов – сумма квадратов отклонений экспериментальных (эмпирических) значений t_9 от их расчетных (теоретических) значений t_p была минимальной, т.е.

$$\sum_{i=1}^{n} \left(t_{\scriptscriptstyle \partial} - t_{\scriptscriptstyle p} \right)^2 \to \min,$$

где t_p — значение, вычисленное по уравнению регрессии.

Регрессионный анализ позволил установить точечные оценки коэффициентов уравнения регрессии.

Уравнение регрессии имеет вид:

$$t = 341, 21 - 0, 167x \tag{1}$$

Таблица 3

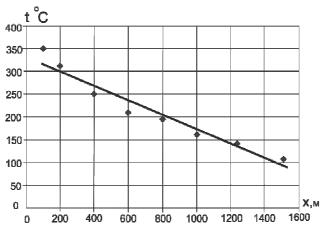


Рисунок 1. Распределение температуры по координате х

Проведена проверка одного из условий Гаусса – Маркова – математическое ожидание отклонений равно нулю для всех наблюдений (таблица 3), (случайные отклонения в среднем не оказывают влияния на зависимые переменные):

Вычисленные по формуле (1) значения температуры

X, MM	t, °C	t*, °C	3
1	2	3	4

100	355	324,4671	30,53287
200	320	307,7199	12,28014
400	255	274,2253	-19,2253
600	215	240,7308	-25,7308
800	190	207,2363	-17,2363
1000	165	173,7417	-8,74172
1250	140	131,8735	8,126455
1500	110	90,00537	19,99463

Коэффициент детерминации полученной модели равен $R^2 = 0.943$.

На следующем этапе обработки результатов экспериментов проверялась возможность представления уравнения регрессии в виде нелинейной зависимости (полинома 2-ой степени).

Уравнение нелинейной регрессии принято в виде:

$$t = b_0 + b_1 x + b_2 x^2 + \varepsilon$$
.

После его линеаризации получено уравнение множественной регрессии:

$$t = b_0 + b_1 z_1 + b_2 z_2$$
, где $z_1 = x$; $z_2 = x^2$.

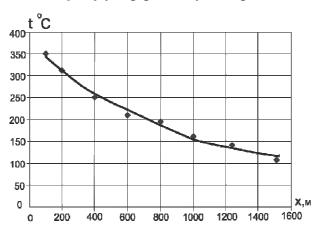


Рисунок 2. Распределение температуры по координате x

Оценки коэффициентов этого уравнения выполнены по методу наименьших квадратов. В результате получено нелинейное выражение в виде

$$t = 377.89 - 0.314 \cdot x + 0.00009 \cdot x^2. \tag{2}$$

Проведены расчеты отклонений между экспериментальными значениями t и значениями t^* , полученными по формуле (2). Установлено, что суммарная погрешность мала (таблица 4):

Таблица 4

Вычисленные по формуле (2) значения температуры

X, MM	t, °C	t*, °C	3
1	2	3	4
0,10	355	347,3768	7,623247941
0,20	320	318,741	1,259018303
0,40	255	267,1217	-12,12173758
0,60	215	223,0389	-8,038888926
0,80	190	186,4924	3,507564255
1,00	165	157,4824	7,517621966
1,25	140	131,8179	8,182137975
1,50	110	117,929	-7,928963938
	Суммарная по	-2,55795E-13	

Коэффициент детерминации ($R^2 = 0.9909$) в этом случае оказался выше, чем в линейной модели. Установлено, что при уровне значимости 0.05 все коэффициенты являются статистически значимыми.

Обе модели дают незначительную суммарную погрешность отклонений, но нелинейная регрессионная модель предпочтительнее.

На основании полученных результатов можно сделать вывод о том, что в относительно малой по размерам (около 1,5 м) области вблизи излучающей поверхности газового инфракрасного излучателя температура воздуха изменяется от максимального значения $335\,^{0}$ С (x=0,1 м) до $110\,^{0}$ С (x=1,5 м). Такие высокие температуры могут быть следствием только интенсивного прогрева воздуха за счет теплопроводности. Эксперименты проводились в среде очищенного от пыли (которая может поглощать и рассеивать энергию излучения) воздуха. Поэтому повышение температуры в этой области не может быть следствием непосредственного воздействия лучистого потока.

Полученные экспериментальные данные являются основанием для вывода о необходимости учета процессов кондуктивного теплопереноса при анализе температурных полей в области нагрева газовыми инфракрасными излучателями.

Результаты выполненных экспериментальных исследований являются основанием для дальнейшего развития моделей теплопереноса в замкнутых областях, заполненных воздухом и ограниченных стенками конечной толщины, в условиях работы локальных источников нагрева (в том числе газовых инфракрасных излучателей) [2-4]. Установлено, что процессы конвекции в воздухе, несмотря на низкие коэффициенты теплопроводности этого газа, играют важную роль в формировании тепловых режимов областей, нагреваемых за счет потока излучения, поступающего с верхней границы таких областей.

Работа выполнена в рамках НИР Госзадания «Наука» (Шифр Федеральной целевой программы 2.1321.2014).

Список литературы

- 1. Теплоперенос при нагреве локальной области крупногабаритного производственного помещения газовыми инфракрасными излучателями / Кузнецов Г.В. , Куриленко Н.И., Максимов В.И., Мамонтов Г.Я., Нагорнова Т.А. // Инженерно-физический журнал. 2013 1.86 1.
- 2. Kuznetsov, G.V., Sheremet, M.A. Mathematical modelling of complex heat transfer in a rectangular enclosure// Thermophysics and Aeromechanics. March 2009. Vol 16, Is. 1, P. 119-128.
- 3. Kuznetsov, G.V., Sheremet, M.A. New approach to the mathematical modeling of thermal regimes for electronic equipment // Russian Microelectronics. March 2008 Vol. 37. Is. 2. P. 131-138.
- 4. Kuznetsov, G.V., Sheremet, M.A. Two-dimensional problem of natural convection in a rectangular domain with local heating and heat-conducting boundaries of finite thickness// Fluid Dynamics. November 2006. Vol. 41. Is. 6. P. 881-890.
- 5. Maksimov V.I., Nagornova T.A. Influence of heatsink from upper boundary on the industrial premises thermal conditions at gas infrared emitter operation // EPJ Web of Conferences. 2014. Vol. 76. Article number 01006.

Репензенты:

Заворин А.С., д.т.н., зав. каф. Парогенераторостроения и парогенераторных установок НИ ТПУ, г. Томск;

Литвак В.В., д.ф.-м.н., профессор каф. Атомных и тепловых электростанций НИ ТПУ, г. Томск.