ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНОГО ПРОГИБА РОМБИЧЕСКИХ ПЛАСТИНОК С КОМБИНИРОВАННЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ

Фетисова М.А.1

¹ФГБОУ ВПО «Орловский государственный аграрный университет», Орел, Россия (302016, г. Орел, ул. Комсомольская, д. 142), e-mail: fetisovamaria@meil.ru

В статье на нескольких примерах показано, что с помощью метода интерполяции по коэффициенту формы можно достаточно просто определять величину максимального прогиба пластинок в виде ромба с комбинированными граничными условиями, нагруженных равномерно распределенной нагрузкой. В основе метода интерполяции по коэффициенту формы лежит изопериметрический метод. Основным аргументом в получаемых аналитических зависимостях является отношение коэффициента формы к площади области. Все определенное ограниченное подмножество областей имеет граничные (опорные) решения. Метод интерполяции по коэффициенту формы дает возможность достаточно просто и с высокой степенью точности находить значения изгиба в задачах строительной механики пластинок, связанных с ромбическими областями с комбинированными граничными условиями.

Ключевые слова: аффинное преобразование, интерполяция, коэффициент формы, комбинированные граничные условия, ромб, пластинка.

MAXIMUM DEFLECTION DEFINITION OF RHOMBS PLATES WITH COMBINED BOUNDARY CONDITIONS

Fetisova M.A.

Oryol state agricultural university, Oriel, Russia (302016 Oriel, Komsomolskaya, 142), e-mail: fetisovamaria@meil.ru

In article on several examples it is shown, that by means of an interpolation method on a form factor it is possible to define simply enough size of the maximum deflection of plates in the form of a rhombus with the difficult boundary conditions, loaded with uniformly distributed loading. At the heart of an interpolation method on a form factor the isoperimetric method lays. The basic argument in received analytical dependences is the relation of a form factor to the area. All decisions for a certain restrained subset of areas have boundary (basic) decisions. The interpolation method on coefficient of a form gives the chance rather simply and with a fine precision to find values of a bend in problems of construction mechanics of the plates connected with rhombic areas with the combined boundary conditions.

Keywords: affine transformation, interpolation, form factor, the combined boundary conditions, rhombus, plate.

При проектировании строительных конструкций во многих случаях их расчётные схемы представляются в виде пластинок сложной формы (треугольные, ромбические, параллелограммные, трапецеидальные) с различными граничными условиями. Они применяются в качестве несущих элементов перекрытий зданий, мостовых конструкций. В настоящее время в строительной механике по-прежнему большое значение придается разработке, развитию и совершенствованию методов расчета строительных конструкций, которые позволяют путем сравнительно несложных инженерных расчётов получать оценки интегральных физических параметров конструкций.

Одним из таких методов расчета конструкций в виде упругих пластинок является метод интерполяции по коэффициенту формы (МИКФ). В основу данного метода положены изопериметрические свойства и закономерности изменения коэффициента формы области K_f при различных геометрических преобразованиях.

Коэффициент формы плоской области и является количественной характеристикой

формы области и выражается через контурный интеграл [6]:

$$K_f = \oint_{L} \frac{ds}{h},\tag{1}$$

где ds – линейный элемент контура области; h – высота, опущенная из полюса, взятого внутри области, на касательную к переменной точке контура; L – периметр области.

Коэффициент формы *Kf* определяется:

для параллелограммных пластинок

$$K_f = \frac{4(a/c + c/a)}{\sin \alpha},\tag{2}$$

где a, b – стороны параллелограмма; α – угол при основании;

для прямоугольных пластинок

$$K_f = 4\left(\frac{a}{c} + \frac{c}{a}\right) = 4\left(k + \frac{1}{k}\right),\tag{3}$$

где a, b – стороны прямоугольника; k = a/b;

для ромбических пластинок:

$$K_f = 8/\sin\alpha, \tag{4}$$

где α – угол при основании.

Сущность метода интерполяции по коэффициенту формы заключается в следующем. Выбирается геометрическое преобразование заданной пластинки с таким расчетом, чтобы в полученное множество форм пластинок входили хотя бы две, для которых известны решения, либо их можно получить каким-либо точным или приближенным методом. Имея опорные решения, приводим их к изопериметрическому виду [1; 2]:

$$w = KQ \left(\frac{K_f}{A}\right)^n, \tag{5}$$

где п и К – неизвестные параметры.

Эти параметры определяются из известных решений $(w_0)_1$ и $(w_0)_2$, которые называются опорными решениями, а соответствующие им формы пластинок — опорными фигурами. Используем опорные решения и структуру формул, полученных при преобразовании интегро-дифференциальных соотношений технической теории пластинок:

$$n = \frac{\ln(w_{01}/w_{02})}{\ln(K_{f2}/K_{f1} \cdot A_1/A_2)},\tag{6}$$

$$w_0 = \left(w_0\right)_1 \left(\frac{K_{f1}}{K_f} \frac{A}{A_1}\right)^n,\tag{7}$$

где индексы 1 и 2 относятся к параметрам двух опорных пластинок.

Графически рассмотренная аппроксимация изображена на рисунке 2, где кривая I соответствует действительным значениям w_o , а кривая II - приближенным решениям, полученным по формуле (7). Приведенные выше рассуждения основывались на непрерывных геометрических преобразованиях, когда изменение формы фигур рассматриваемого множества происходит непрерывно и монотонно.

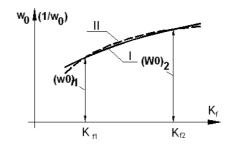


Рис. 1. График зависимости максимального прогиба от коэффициента формы.

Заданный ромб или параллелограмм может быть получен с помощью аффинных преобразований прямоугольников, а именно в результате аффинного сдвига; растяжения (при этом $\alpha = const$); аффинное преобразование, при котором a/c = const. Поэтому можно получить бесконечно большое число опорных решений для нахождения прогиба ромбической или параллелограммной пластинки. Рассмотрим ромбические пластинки, нагруженные равномерно распределенной нагрузкой, имеющие комбинированное опирание.

Пример 1. Рассмотрим пластинку постоянной толщины, комбинированно опертую (рис. 2), нагруженную равномерно распределенной по всей поверхности нагрузкой. Требуется найти решение и оценить погрешность для прогиба пластинок в виде ромба с $\alpha = 35$; 45; 55; 65; 75; 85.

Рис. 2. Условия опирания пластинки.

Принимаем в качестве опорных фигур пластинки в виде ромбов с $\alpha = 25$ ($K_f = 18,93$; $1000W_0 = 1,0176$) и $\alpha = 90$ ($K_f = 8$; $1000W_0 = 2,208$), по формулам МИКФ находим максимальный прогиб для заданных пластин; найденные данные сведены в таблицу 1.

Таблица 1

Значения максимального прогиба ромбических пластинок с комбинированными $\text{граничными условиями } W_0 = K \cdot qA^2 \big/ D$

Характеристики	α									
пластинок	25	35	45	55	65	75	85	90		
1000 W ₀	1,0176	1,415	1,992	2,324	2,574	2,828	2,837	2,886		
(МКЭ)										
1000 W ₀		1,427	1,9998	2,364	2,529	2,735	2,866			
(МИКФ)										
K _f	18,93	13,947	11,314	9,766	8,827	8,282	8,03	8		
Разница, %		0,85	0,39	1,73	1,79	3,41	1,02			

Пример 2. Рассмотрим пластинку постоянной толщины, комбинированно опертую (рис. 3), нагруженную равномерно распределенной по всей поверхности нагрузкой. Требуется найти решение и оценить погрешность для прогиба пластинок в виде ромба с $\alpha = 35$; 45; 55; 65; 75; 85.

Принимаем в качестве опорных фигур пластинки в виде ромбов с $\alpha = 25$ ($K_f = 18,93$; $1000W_0 = 0,664$) и $\alpha = 90$ ($K_f = 8$; $1000W_0 = 2,208$), по формулам МИКФ находим максимальный прогиб для заданных пластин; найденные данные сведены в таблицу 2.

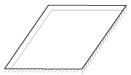


Рис. 3. Условия опирания пластинки.

Таблица 2 Значения максимального прогиба ромбических пластинок с комбинированными $\text{граничными условиями } W_0 = K \cdot qA^2 \Big/ D$

Характеристики	α									
пластинок	25	35	45	55	65	75	85	90		
1000 W ₀ (MKЭ)	0,664	1,09	1,459	1,747	1,92	2,122	2,186	2,208		
1000 W ₀ (МИКФ)		1,0926	1,468	1,764	1,979	2,1154	2,196			
K _f	18,93	13,947	11,314	9,766	8,827	8,282	8,03	8		
Разница, %		0,59	0,65	0,15	3,06	0,31	0,45			

Анализируя результаты, представленные в таблицах 1 и 2, можно сделать вывод о том, что погрешность решения, полученного с помощью метода интерполяции по коэффициенту формы (строка 2 табл. 1 и 2) и метода конечных элементов (строка 1 табл. 1 и 2), мала и не превышает 5%.

Таким образом, МИКФ дает возможность достаточно просто и с высокой степенью точности находить значения изгиба в задачах строительной механики пластинок, связанных с ромбическими областями с комбинированными граничными условиями.

Список литературы

- 1. Коробко А.В. Геометрическое моделирование формы области в двумерных задачах теории упругости. М.: ABC, 1999. 320 с.
- 2. Коробко В.И. Изопериметрический метод в строительной механике. М. : ABC, 1997. Т. 1. 396 с.
- 3. Коробко А.В., Фетисова М.А. Определение поперечного изгиба методом интерполяции по коэффициенту формы при аффинном преобразовании пластинок в виде ромбов и параллелограммов с комбинированными граничными условиями // Пром. и гражд. стр-во. 2010. № 1. С. 23-24.
- 4. Коробко А.В., Фетисова М.А. Способы решения задач поперечного изгиба трапециевидных пластинок // Строительство и реконструкция. 2010. № 1. С. 36-39.
- 5. Полиа Г., Сеге Г. Изопериметрические неравенства в математической физике. М. : Госматиздат, 1962. 336 с.
- 6. Фетисова М.А., Володин С.С. Коэффициент формы как геометрическая характеристика // Молодой ученый [Чита]. 2011. № 5. С. 36-39.
- 7. Фетисова М.А., Володин С.С. Применение метода интерполяции по коэффициенту формы для решения задач строительной механики // Молодой ученый [Чита]. 2013. № 3. С. 114-116.

Рецензенты:

Дрозд Г.Я., д.т.н., профессор, ФГБОУ ВПО «Орловский государственный аграрный университет», г. Орел;

Шафорова О.А., д.э.н., профессор, ФГБОУ ВПО «Орловский государственный университет экономики и торговли», г. Орел.