УДК 544.022.4:546.661

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СОЕДИНЕНИЙ а- И β-EuDyAgS3

Русейкина А.В.¹

¹ФГБОУ ВПО «Тюменский государственный университет», Тюмень, Россия, e-mail: adeschina@mail.ru

По данным порошковой рентгеновской дифракции определена кристаллическая структура впервые синтезированного сложного сульфида EuDyAgS₃, который имеет две полиморфные модификации: высокотемпературную — кубической сингонии (β -EuDyAgS₃), пр.гр. Fm3m, структурного типа AgBiS₂ с параметрами элементарной ячейки: a = 5,697(2) Å и низкотемпературную – моноклинной сингонии (α -EuDyAgS₃), изоструктурную BaErAgS₃, пр.гр. С 12/m1 с параметрами элементарной ячейки: a = 17,2052(19), b = 3,9448(4), c = 8,2979(7) Å. В кристаллической структуре соединения α -EuDyAgS₃ тригональные бипирамиды AgS₅ образуют параллельные двумерные слои в плоскости *c-b*. Октаэдры DyS₆ и тригональные бипирмиды AgS₅ соединяются ребрами с образованием трехмерной структуры с каналами, вмещающими ионы Eu. Одношапочные тригональные призмы EuS₇ образуют двумерные слои в плоскости *b-a*. Переход α -EuDyAgS₃ в β -EuDyAgS₃ происходит в температурном интервале 970–1170 К.

Ключевые слова: сложные сульфиды, редкоземельные элементы, кристаллическая структура, рентгенофазовый анализ, структурные параметры, проекции структур

CRYSTAL STRUCTURE OF α- AND β-EuDyAgS₃ COMPOUNDS

Ruseikina A.V.¹

¹*Tyumen State University, Tyumen, Russia, e-mail: adeschina@mail.ru*

The crystal structure of the first time ever synthesized complex sulfide EuDyAgS₃ was identified by X-ray powder diffraction. It has been found that there are two polymorphic modifications of the sulfide: high-temperature modification: cubic crystal system (β -EuDyAgS₃), Fm3m space group, AgBiS₂-structure type with elementary cell parameter a = 5,697(2) Å; low-temperature modification: monoclinic crystal system (α -EuDyAgS₃), C12/m1 space group, BaErAgS₃-structure type, elementary cell parameters a = 17,2052(19), b = 3,9448(4), c = 8,2979(7) Å. The crystal structure of α -EuDyAgS₃ could be described as combination of several substructures: trigonal bipyramids of AgS₅ form parallel biaxial layers in c-b projection; DyS₆ octahedrons connected with AgS₅ trigonal bipyramids arrange three dimensional structure with channels containing Eu ions; biaxial layers formed by EuS₇ monocapped trigonal prisms could be seen in b-a projection. Phase transition of α -EuDyAgS₃ into β -EuDyAgS₃ occurs within temperatures interval 970–1170 K.

Keywords: complex sulfides, rare-earth elements, crystal structure, X-ray diffraction analysis, structure parameters, projections of structures

Соединения ALnCuS₃ (A = Sr, Ba, Pb, Eu; Ln = La–Lu), полученные при соотношении исходных сульфидов 2AS: 1Ln₂S₃: 1Cu₂S, образуются в системах AS–Ln₂S₃–Cu₂S [2, 3, 5, 6, 8, 10]. Для сложных сульфидов ALnCuS₃ (Ln = Sr, Eu) в интервале 970–1170 К характерно образование полиморфных модификаций [3]. Электронная аналогия Cu и Ag позволяет сделать предположение, что в системах AS–Ln₂S₃–Ag₂S будут также образовываться сульфиды изоформульного состава ALnAgS₃. Получены соединения BaLnAgS₃ (Ln = Er, Y, Gd) структурного типа (CT) BaAgErS₃ [8, 10]. Близость ионных радиусов определяет возможность изоморфного замещения ионов бария на ионы европия или стронция и образование новых соединений ALnAgS₃ (Ln = Sr, Eu). В системе SrS–Dy₂S₃–Ag₂S установлено образование нового сложного сульфида [4]. Соединение EuLnAgS₃ должно образовываться в тройной системе EuS–Ln₂S₃–Ag₂S в разрезе AgLnS₂–EuS при соотношении

исходных сульфидов 1AgLnS₂: 1EuS. Соединение AgLnS₂ образуется в ряду (Ln = Sm-Lu), а у легких лантанидов La-Nd данных соединений не существует [4]. Таким образом, можно предположить образование новых сложных сульфидов EuLnAgS₃ для тяжелых редкоземельных элементов.

Диспрозий Dy (4f¹⁰5d⁰6s²) проявляет стабильную валентность, равную 3, является типичным редкоземельным элементом иттриевой подгруппы, что позволяет выделить систему EuS–Dy₂S₃–Ag₂S в качестве модельной. В бинарных системах Dy₂S₃–EuS, AgDyS₂, составляющих тройную систему, образуются сложные сульфиды. Так, в системе Dy₂S₃–EuS соединение EuDy₂S₄ имеет две полиморфные модификации: кубическую, CT Th₃P₄ с параметрами элементарной ячейки (э.я.): a = 8,440 Å и ромбическую, CT CaV₂O₄ с параметрами э.я.: a = 11.877; b = 3.940; c = 14,213 Å [2]. В системе Ag₂S–Dy₂S₃ образуется соединение AgDyS₂ (моноклинная деформация структуры соединения AgYbS₂) с параметрами э.я.: a = b = 7.68; c = 12,05 Å; $\beta = 89,42^0$ [2, 4]. В литературе не обнаружены сведения об образовании соединений внутри концентрационного треугольника EuS–Dy₂S₃–Ag₂S.

Цель настоящей работы заключается в определении кристаллической структуры, установлении полиморфных модификаций впервые синтезированного соединения EuDyAgS₃ по данным порошковой рентгеновской дифракции.

Материал и методы исследования

Сульфиды EuS, Dy₂S₃ синтезированы из оксидов марок «ЕвО-Ж», «ДиО-Л» косвенным методом в потоке H_2S и CS₂ при 1300 К [1-3]. Соединение $Ag_{1.985}S$ получено из элементарных Cu и S ампульным методом (строго стехиометрического состава Ag_2S не образуется, сульфидная фаза имеет состав $Ag_{1.99-1.97}S$ [4]). По данным РФА простые сульфиды однофазны. В пределах погрешности химического анализа сульфиды имеют стехиометрический состав.

Синтез соединения EuDyAgS₃ проводили несколькими способами.

Способ 1

Смесь сульфидов EuS, Dy₂S₃, Ag_{1.985}S в соотношении 2EuS:1Dy₂S₃:1Ag_{2-x}S в графитовом тигле помещали в кварцевый реактор, который вакуумировали, продували аргоном (рис. 1). Тигель нагревали индукционным воздействием в генераторе токов высокой частоты (ТВЧ), в течение 2 мин выдерживали вблизи температуры плавления при постоянном встряхивании. Момент плавления наблюдали визуально. Термообработку повторяли три раза. Образец отжигали в вакуумированной и запаянной кварцевой ампуле при 970 К в течение 3 месяцев.

Рис. 1. Установка ТВЧ (А) и конструкция реактора (Б) для получения сложного сульфида. Обозначения: 1 – генератор токов высокой частоты; 2 – индуктор генератора; 3 – кварцевый реактор; 4 – баллон с инертным газом (аргон); 5 – графитовый тигель; 6 – алундовый экран; 7 – смесь исходных сульфидов

Способ 2

Сплавлением EuS, Dy₂S₃, Ag и S в графитовом тигле, помещенном в кварцевый реактор, в атмосфере аргона (термообработка аналогична способу 1).

Способ 3

Сплавлением EuS, Dy₂S₃, Ag и S в графитовом тигле, находящемся в вакуумированной и запаянной кварцевой ампуле (рис. 2). Ампулу нагревали в электропечи до 1570 К и выдерживали 30 мин. Охлаждение проводили в режиме выключенной печи. Запаянную ампулу со спеченным образцом помещали в открытый кварцевый реактор, который вакуумировали и продували аргоном. Тигель нагревали индукционным воздействием в генераторе TBЧ и в течение 2 мин выдерживали вблизи температуры плавления при постоянном встряхивании. Момент плавления наблюдали визуально. Полученные образцы отжигали при 1170 и 970 К в течение 1 и 3 месяцев соответственно.

Рис. 2. Получение образцов сложных сульфидов EuDyAgS₃. Обозначения: 1 – кварцевая ампула; 2 – графитовый тигель с веществом

Индивидуальность синтезированного соединения подтверждена методами микроструктурного (МСА) и рентгенофазового анализов (РФА). МСА выполняли на микроскопе МЕТАМ ЛВ-31.

РФА поликристаллических образцов EuDyAgS₃ проводился на дифрактометрах PANalytical X'Pert PRO, оснащенных детектором PIXcel и ДРОН 7 (Си K_{α} -излучение, Niфильтр). Образцы готовили путем растирания с добавлением октана в агатовой ступке. Peнтгенограммы сняты в интервале углов дифракции $10^{\circ} \le 20 \le 125^{\circ}$. Параметры решетки соединения EuDyAgS₃ (отжиг 970 K) определены с помощью программы ITO. Кристаллическая структура уточнена по порошковым данным методом минимизации производной разности [3]. В качестве исходной модели использованы данные для изоструктурного соединения BaErAgS₃ [10]. Для визуализации кристаллических структур использовали пакет программного обеспечения Diamond 3. Параметры э.я. соединения EuDyAgS₃ (отжиг 1170 K) определяли в программном комплексе PDWin 4.0 и Powder 2. В качестве исходной модели использованы данные для изоструктурного соединения AgBiS₂ [7].

Результаты исследования и их обсуждение

При сплавлении исходных компонентов по *способам 1 и 2* и получении литых образцов наблюдались потери по массе. По данным MCA и РФA образцы, полученные данными способами, после длительного высокотемпературного отжига при 970 К, кроме основной фазы EuDyAgS₃ структурного типа (CT) BaErAgS₃, содержали фазу (Eu,Dy)₃S₄: 84 мас. % EuDyAgS₃ и 16 мас. % (Eu, Dy)₃S₄ (*способ 1*, рис. 3); 59 мас. % EuDyAgS₃ и 41 мас. % (Eu, Dy)₃S₄ (*способ 2*).

Рис. 3. Экспериментальная (1), расчетная (2) и разностная (3) дифрактограммы образца состава 2EuS: 1Dy₂S₃: 1Ag_{2-x}S отжиг 970 К

Литые образцы, полученные охлаждением из расплава по *способу 3*, согласно MCA однофазны, на дифрактограммах присутствуют только рефлексы соединения EuDyAgS₃ CT AgBiS₂. После длительного отжига при 1170 и 970 К установлено, что соединение EuDyAgS₃ имеет две полиморфные модификации: низкотемпературную структурный тип (CT)

BaErAgS₃ (отжиг 970 К) и высокотемпературную CT AgBiS₂ (отжиг 1170 К), обозначенные α и β соответственно.

Дифрактограмма соединения β -EuDyAgS₃ проиндицирована на основе кубической сингонии, пр.гр. Fm3m, с параметрами элементарной ячейки (э.я.): a = 5.697(2) Å (рис. 4).

Рис. 4. Экспериментальная дифрактограмма β-EuDyAgS₃. Условия съемки: ДРОН 7, Си К_α – излучение, Ni – фильтр

По данным порошковой рентгеновской дифракции определена кристаллическая структура сложного сульфида α -EuDyAgS₃. Дифрактограмма соединения α -EuDyAgS₃ проиндицирована на основе моноклинной сингонии, с параметрами э.я.: a = 17.2052(19); b = 3.9448(4); c = 8.2979(7) Å; $\beta = 103.93(1)^0$. Анализ законов погасания показал, что соединение EuDyAgS₃ относится к пр. гр. С 1 2/m 1. Кристаллографические данные, координаты атомов, тепловые параметры приведены в таблице 1. На основе структурных данных вычислены основные кратчайшие расстояния анион-катион (табл. 2). Перспективные проекции структуры вдоль оси *b* представлены на рисунке 5.

Таблица 1

Атом	x/a	y/b	z/c	U
Dy	0,1635(4)	0	0,0840(19)	0,0164(32)
Eu	0,1345(3)	0	0,5664(20)	0,0046(28)
Ag	0,5114(8)	0	0,2073(8)	0,063(5)
S 1	0,3272(14)	0	0,145(7)	0,003(15)
S2	0,6777(15)	0	0,309(7)	0,016(18)
S 3	0	1/2	1/2	0,011(10)
S 4	0	0	0	0,013(13)
S4	0	0	0	0.067(14)

Координаты атомов, тепловые параметры (Å²) в структуре α -EuDyAgS₃

Таблица 2

Связь	Расстояние	Связь	Расстояние	Связь	Расстояние
Dy-S(2)	2×2,686(40)	Eu-S(3)	2×2,989(4)	Ag-S(1)	1×3,085(27)
Dy-S(4)	1×2,730(6)	Eu-S(1)	2×3,049(44)	Ag-S(2)	1×2,781(28)
Dy-S(1)	1×2,739(24)	Eu-S(2)	2×3,125(46)	Ag-S(3)	1×2,483(7)
Dy-S(1)	2×2,770(42)	Eu-S(2)	1×3,146(25)	Ag-S(4)	2×2,593(4)
< Dy-S>	2,730	< Eu-S>	3,067	<ag-s></ag-s>	2,707

Межатомные расстояния (Å) в структуре α-EuDyAgS₃

Полужирным шрифтом выделены средние значения.

*Рис. 5. Перспективные проекции [010] структур соединений EuDyAgS*₃, построенные в программе Diamond 3

Кристаллическая структура соединения EuDyAgS₃ имеет слоисто-блочное строение. Тригональные бипирамиды AgS₅ соединены друг с другом ребрами S(4)S(4) и вершинами S(4) вдоль оси *b* и вершинами S(3) и S(4) вдоль оси *c* с образованием параллельных двумерных слоев в плоскости *c-b*. Среднее расстояние длин связей Ag-S, равное 2,707 Å, ниже теоретического 2,93 Å [9], что свидетельствует об увеличении ковалентной составляющей связи.

Между слоями располагаются семикоординированые атомы Eu и шестикоординированные атомы Dy (рис. 5, 6). Октаэдры DyS_6 соединены между собой вершинами S(4) вдоль оси *a* и ребрами 2×S(1)S(2), расположенными вдоль оси *c* и ребрами 2×S(1)S(1).

Рис. 6. Координация Еи и Dy в соединении EuDyAgS₃

Октаэдры DyS_6 и тригональные бипирмиды AgS_5 соединяются ребрами $2 \times S(2)S(4)$ и $2 \times S(1)S(4)$ образуют трехмерную структуру с каналами, вмещающими ионы Eu. Среднее значение длин связей Dy-S равно 2,730 Å при теоретическом значении 2,91 Å [9].

Одношапочные тригональные призмы EuS_7 соединены попарно ребрами $2 \times S(2)S(2)$ и гранями $2 \times S(1)S(2)S(3)$ вдоль оси *b*, пары соединяются друг с другом вершинами S(3), расположенными вдоль оси *b*, образуя параллельные двумерные слои в плоскости *b*-*a*.

Таким образом, в кристаллической структуре α -EuDyAgS₃ октаэдры DyS₆ и тригональные бипирмиды AgS₅ образуют трехмерную структуру с каналами, вмещающими ионы Eu. Одношапочные тригональные призмы EuS₇ образуют двумерные слои в плоскости b-а.

Выводы

Установлено существование в системе $EuS-Dy_2S_3-Ag_2S$ соединения $EuDyAgS_3$, имеющего две полиморфные модификации: кубической (CT AgBiS₂) и моноклинной сингоний (CT BaErAgS₃). Наличие полиморфных модификаций в температурном интервале 970-1170 К согласуется с данными, полученными для соединений изоформульного состава ALnCuS₃ (Ln = Sr, Eu) [3]. Образование соединения на составе 2EuS: $1Dy_2S_3$: $1Ag_2S$ позволяет прогнозировать существование сложных сульфидов EuLnAgS₃ и в системах EuS-Ln₂S₃-Ag₂S (Ln = Sm, Gd-Lu).

Автор статьи выражает благодарность Соловьеву Л.А. — научному сотруднику Института химии и химической технологии СО РАН, г. Красноярск — за проведение рентгеноструктурного анализа соединения EuDyAgS₃.

Работа выполнена при финансовой поддержке государственного задания № 2014/228 № НИР 996.

Список литературы

Андреев О.В., Вакулин А.А., Киселева К.В. Материаловедение: уч. пособие. Тюмень:
Из-во Тюм. гос.ун-та, 2013. — 632 с.

2. Демчук Ж.А. Фазовые равновесия в системах $Dy_2S_3 - EuS$, $EuS - Dy_2S_3 - Cu_2S$, энтальпии фазовых превращений. Структура соединения $EuHoCuS_3$: Автореф. дис. канд. хим. наук. – Тюмень, 2015. – 18 с.

Русейкина А.В. Кристаллическая структура соединений α- и β-EuPrCuS₃ / А.В.
Русейкина, Л.А. Соловьев, О.В. Андреев // Журн. неорган. химии. – 2013. – Т. 58. – № 10. – С. 1375–1380.

4. Физико-химический анализ составов 2SrS: $1Ln_2S_3$: $1Ag_{2-x}S$ (La = La, Nd, Dy, Er, Lu) / A.B. Русейкина, Е.О. Галенко, Л.А. Соловьев, А.М. Жерновникова // Вестник Тюм. гос. унта. – 2013. – № 5 – С. 56–64.

5. Christuk A. E. New Quaternary Chalcogenides $BaLnMQ_3$ (Ln = Rare Earth; M = Cu, Ag; Q = S, Se). Structures and Grinding-Induced Phase Transition in $BaLaCuQ_3$ / A. E. Christuk, P. Wu, J. A. Ibers// J. Solid State Chem. – 1994. – V. 110. – P. 330–336.

Crystal structures of the RCuPbS₃ (R = Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds / L.D.
Gylay, I.D. Olekseyuk, M. Wolcyrz, J. Stepien-Damm // J. of Allous and Compounds. – 2005. – V.
399. – P. 189–195.

 Graham A.R. Matildite, Aramayoite, Miargyrite // Am. Mineral. – 1951. – V. 36. – P. 436– 449.

Koscielski L. A. The Structural Chemistry of Quaternary Chalcogenides of the Type AMM'Q₃ / L.A. Koscielski, J.A. Ibers // Zeitschrift fur Anorganische und Allgemeine Chemie. – 2012. 638. – V. 15 – P. 2585–2593.

9. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides / R.D. Shannon // Acta Crystallog. – 1976. – A. 32. – P. 751–767.

10. Wu, P. Synthesis of the New Quaternary Sulfides $K_2Y_4Sn_2S_{11}$ and BaLnAgS₃ (Ln = Er, Y, Gd) and the Structures of $K_2Y_4Sn_2S_{11}$ and BaErAgS₃ / P. Wu, J. A. Ibers// J. Solid State Chem. – 1994. – V. 110. – I. 1. – P. 156–161.

Рецензенты:

Пимнева Л.А., д.х.н., профессор, зав. кафедрой общей и специальной химии Тюменского государственного архитектурно-строительного университета, г. Тюмень;

Жихарева И.Г., д.х.н., профессор кафедры общей и физической химии Тюменского государственного нефтегазового университета, г. Тюмень.