ПРИМЕНЕНИЕ МЕТОДА КОРРЕЛЯЦИОННОГО АНАЛИЗА В ИЗУЧЕНИИ СОМАТИЧЕСКОГО СТАТУСА ЛИЦ ЮНОШЕСКОГО ВОЗРАСТА

Романенко А.А.¹, Деревцова С.Н.¹

 1 ГБОУ ВПО «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Минздрава РФ», Красноярск, Россия (г. Красноярск, ул. Партизана Железняка, 1), e-mail: rector@krasgmu.ru

Проведен корреляционный анализ между антропометрическими показателями и компонентным составом тела лиц юношеского возраста (256 юношей и 511 девушек). Средний возраст юношей и девушек составил 18,7 года. Для оценки параметров физического статуса студентов нами использовались антропометрия и биоимпедансометрия. Антропометрическое обследование проведено по классической методике В.В. Бунака (1937, 1941) с использованием стандартизированного набора инструментов. Определены длина тела, масса тела, диаметры плеч и таза, поперечный диаметр грудной клетки, обхватные размеры талии и бедер. Компонентный состав тела определен методом биоимпедансного анализа при помощи анализатора состава тела и баланса водных секторов организма АВС-01 «Медасс». Выявлены абсолютные и относительные величины жировой, мышечной и костной масс и их составляющие. Метод корреляционного анализа применен в рамках компьютерной математической программы SPSS 22.0.

Ключевые слова: коэффициенты корреляции, габаритные размеры тела, компонентный состав тела, лица юношеского возраста.

THE APPLICATION OF CORRELATIVE ANALYSIS METHOD IN THE STUDY OF SOMATIC STATUS OF TEENAGERS

Romanenko A.A.¹, Derevtsova S.N.¹

¹«Krasnoyarsk state medical university named after prof. V.F. Vojno-Yasenetskij», Krasnoyarsk, Russia (Krasnoyarsk, Guerrilla Zheleznyak St., 1); e-mail: rector@krasgmu.ru

The correlation analysis was conducted between anthropometric measurements and body composition component of teenagers (256 men and 511 women). The average age of boys and girls was 18.7 years. To estimate the parameters of the physical status of the students, we used anthropometry and bioimpedance analysis. The anthropometric survey was conducted by the classical method of VV Bunak (1937, 1941) with the use of standardized set of tools. They were identified body length, weight, diameter of the shoulders and pelvis, transverse diameter of the chest, obhvatnye size waist and hips. Component body composition was determined by bioimpedance analysis with the analyzer body composition and the balance of the body of water sector ABC 01 "Medass." They were identified absolute and relative values of fat, muscle and bone mass and their components. The method of correlation analysis was applied within a mathematical computer program SPSS 22.0

Keywords: correlation coefficients, overall body size, body composition component, teenagers.

В настоящее время становятся все более актуальными корректное применение статистических методов, научный подход к планированию медицинских исследований. Это связано с развитием концепции и практики доказательной медицины, с повышением требований к методологическому качеству исследований [5, с. 10]. Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения показателей. Таким образом, визуальный анализ корреляционного поля помогает выявить не только наличия статистической зависимости (линейную или нелинейную) между исследуемыми признаками, но и ее тесноту

и форму. Это имеет существенное значение для следующего шага в анализе выбора и вычисления соответствующего коэффициента корреляции [3, с. 23].

При оценке физического развития используют корреляционные связи для выявления причинно-следственных отношений между изучаемыми признаками [4, с. 154].

Целью нашей работы явилось изучение соматического статуса лиц юношеского возраста с использованием метода корреляционного анализа.

Материал и методы исследования

В выборку были включены лица юношеского возраста, обучающиеся в Красноярском государственном медицинском университете им. В.Ф. Войно-Ясенецкого. В обследовании приняли участие 767 человек – 256 юношей и 511 девушек. Антропометрические измерения были проведены с использованием стандартного набора инструментов по методу В.В. Бунака (1937, 1941) с определением длины тела, массы тела, диаметров плеч и таза, поперечного диаметра грудной клетки, обхватных размеров талии и бедер [1, с. 142]. Компонентный состав тела (абсолютные и относительные величины жировой, мышечной и костной масс и их составляющих) был определен методом биоимпедансого анализа с помощью анализатора оценки баланса водных секторов организма АВС-01 «Медасс» [2, с. 45]. Обработку полученного материала проводили с помощью стандартных методов математической статистики с использованием пакета прикладных программ SPSS 22.0. Функциональные связи между параметрами были определены с помощью коэффициента корреляции г - Спирмена, который считали достоверным при Р < 0,05.

Результаты и обсуждение

Результаты проведенного корреляционного анализа между антропометрическими показателями и компонентным составом тела юношей представлены в таблице 1. Габаритные размеры тела юношей (длина и масса тела) дают среднюю по силе корреляцию между собой (г=0,532). Обхваты талии и бедер давали наибольший коэффициент корреляции с абсолютными значениями жировой, мышечной и костной массы (г=0,807; г=0,767 и г=0,845 соответственно), с тощей массой, которая включает мышечный и костный компонент сомы (г=0,845), а также с относительными величинами жировой массы (г=0,720). Однако с относительными значениями мышечной и костной массы обхватные размеры имели отрицательные сильные по силе связи (г=-0,751 и г=-0,776). Активная клеточная масса, служащая коррелятом двигательной активности, является сильно коррелирующим признаком с обхватом талии и бедер. Общая жидкость и внеклеточная жидкость, характеризующие состояние гидратации тела и определяющие избыток или дефицит воды в организме, имели сильные коэффициенты корреляции (г=0,845 и г=0,844) с обхватными размерами.

 Таблица 1

 Коэффициенты корреляции Спирмена между антропометрическими показателями и компонентным составом тела юношей юношеского возраста (N=256)

No	Показатели	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	Длина тела, см		532	276	482	-206	327	523	490	-182	-212	-080	174	491	567	350	272	578	-250	568	-310	494	-087	568	584
2	Масса тела, кг			893	938	348	650	576	486	-741	-595	183	913	885	925	838	728	856	-742	924	-792	887	182	924	928
3	Обхват талии, см				882	650	647	416	404	-694	-504	237	916	776	786	804	720	698	-751	786	-769	777	236	786	780
4	Обхват бедер, см					256	616	483	505	-665	-546	140	867	804	845	807	710	767	-740	845	-776	805	139	845	844
5	Отношение обхвата						356	076	048	-368	-173	264	498	320	278	370	356	215	-374	278	-347	319	264	278	266
	талии к обхвату																								
	бедер																								
6	Поперечный							573	494	-549	-448	092	623	597	631	519	443	585	-461	631	-479	598	095	631	627
	диаметр грудной																								
	клетки, см																								
7	Диаметр плеч, см								470	-430	-395	017	434	542	600	423	343	584	-346	600	-372	544	017	600	603
8	Диаметр таза, см									-082	-330	-089	332	396	472	381	323	451	-316	473	-348	402	-089	473	480
9	Активное										766	-285	-784	-863	-867	-404	-258	-892	255	-867	332	-864	-287	-867	-870
	сопротивление, Ом																								
10	Реактивное											355	-588	-539	-696	-319	-200	-725	188	-695	266	-535	350	-695	-704
	сопротивление, Ом																								
11	Фазовый угол												257	441	211	112	076	199	-092	212	-083	449	998	212	199
12	Индекс массы тела													800	808	819	728	723	-756	807	-783	801	259	807	803
13	Основной обмен,														963	565	419	935	-447	963	-491	998	439	963	948
	ккал/ сут																								
14	Тощая масса, кг															598	450	974	-470	1,00	-525	963	209	1,00	991
15	Жировая масса, кг																982	500	-953	598	-984	571	113	598	617
16	Жировая масса, %																	347	-962	449	-981	426	077	449	473
17	Мышечная масса,																		-333	974	-424	937	197	974	985
	КГ																								
18	Мышечная масса, %																			-470	970	-450	-093	-470	-467
19	Костная масса, кг																				-525	963	209	1,00	990
20	Костная масса, %																					-498	-085	-525	-548
21	Активная клеточная																						448	963	950
	масса, кг																								
22	Активная клеточная																							209	197
	масса, %																								000
23	Общая жидкость, кг	1					1		-																990
24	Внеклеточная																								
	жидкость, кг																								

Примечание: ноль и запятая в значении коэффициента корреляции опущены.

Энергетические траты организма на протекание необходимых жизненных функций - обмен веществ в клетках, деятельность постоянно работающих органов (дыхательных мышц, сердца, почек, мозга), поддержание минимального уровня мышечного тонуса - представляют основной обмен. Основной обмен, рассчитанный методом биоимпедансного анализа, и обхватные размеры тела, определяемые антропометрическим методом обследования, находятся между собой в сильной корреляционной зависимости (r=0,776 и r=0,804).

Корреляционный анализ выявил средние по силе связи между поперечными размерами тела и компонентным составом тела. Так, поперечный диаметр грудной клетки, диаметры плеч и таза имели корреляционную зависимость с тощей, жировой, мышечной, костной массами тела и общей и внеклеточной жидкостями.

Корреляционный анализ был проведен у девушек юношеского возраста между антропометрическими показателями и компонентным составом тела (табл. 2).

Длина и масса тела девушек коррелируют между собой со средней силой связи (r=0,426). Обхваты талии и бедер давали наибольший коэффициент корреляции (r=0,807 и r=0,813) с абсолютным и относительным значениями жировой массы тела; с абсолютными значениями мышечного, костного компонентами сомы и тощей массы имели положительную среднюю по силе связь, а с относительными величинами этих компонентов сомы – отрицательную связь, аналогичную по силе. Активная клеточная масса, отражающая мышечный компонент сомы, средне коррелирует с обхватами талии и бедер. Общая жидкость и внеклеточная жидкость, которые являются не только важными составляющими обменных процессов в организме человека, но и участвуют в поддержании постоянства внутренней среды организма, имели средние и сильные коэффициенты корреляции (r=0,697 и r=0,725) с обхватными размерами. Основной обмен и обхватные размеры талии и бедер находились между собой в средней корреляционной зависимости (r=0,697 и r=0,610).

У девушек корреляционные связи между поперечными размерами тела (поперечным диаметром грудной клетки, диаметрами плеч и таза) и компонентным составом тела были средними по силе.

 Таблица 2

 Коэффициенты корреляции Спирмена между антропометрическими показателями и компонентным составом тела девушек юношеского возраста (N=511)

No	Показатели	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	Длина тела, см		426	160	310	-120	299	416	420	008	-033	-061	-009	414	515	258	183	491	-107	515	-026	416	-058	515	517
2	Масса тела, кг			833	892	290	511	466	327	-482	-342	135	880	718	804	885	790	618	-690	804	-582	727	141	804	837
3	Обхват талии, см				786	644	505	354	305	-435	-260	174	846	581	610	807	747	455	-656	610	-587	587	178	610	639
4	Обхват бедер, см					097	421	361	334	-442	309	112	827	618	697	813	737	518	-655	697	-558	629	116	697	725
5	Отношение обхвата						341	157	102	-186	-067	141	387	208	164	334	328	122	-288	164	-286	204	143	164	180
	талии к обхвату																								
	бедер																								
6	Поперечный							595	400	-283	-213	052	424	415	457	438	385	393	-309	457	244	418	054	457	471
	диаметр грудной																								
	клетки, см																								
7	Диаметр плеч, см								406	-240	-143	075	307	433	470	366	308	420	-229	470	-163	440	074	470	480
8	Диаметр таза, см									-127	-089	005	156	298	347	254	216	315	-154	345	-100	301	-003	345	350
9	Активное										642	-334	-548	-773	-784	-175	-044	-814	-101	-784	-220	-779	-329	-784	-771
	сопротивление, Ом																								<u> </u>
10	Реактивное											449	-367	-266	-517	-152	-059	-543	-038	-517	-127	-270	449	-517	-513
	сопротивление, Ом																								
11	Фазовый угол												176	554	249	008	-037	253	077	249	108	554	996	249	243
12	Индекс массы тела													584	624	855	794	441	-716	624	-637	593	180	624	657
13	Основной обмен,														918	417	279	858	-138	918	007	993	555	918	909
	ккал/ сут															100	2.1.5	0.00	100	1.00	0.14		2.10	4.00	004
14	Тощая масса, кг															490	345	929	-192	1,00	-041	927	249	1,00	994
15	Жировая масса, кг																982	271	-900	491	-849	425	014	491	532
16	Жировая масса, %																	123	-934	346	-912	286	-030	346	388
17	Мышечная масса,																		082	929	171	865	249	929	916
10	KΓ																			100	0.4.4	1.1.1	0.60	102	241
18	Мышечная масса, %																			-193	944	-144	069	-193	-241
19	Костная масса, кг																				-042	927	248	1,00	994
20	Костная масса, %																					001	103	-042	-098
21	Активная клеточная																						553	927	918
22	масса, кг																							240	2.42
22	Активная клеточная																							248	243
22	масса, %	-			1	1	1								1							1			004
23	Общая жидкость, кг	-			1	1	1								1							1			994
24	Внеклеточная																								
	жидкость, кг																								

Примечание: ноль и запятая в значении коэффициента корреляции опущены.

Выводы

Изучение соматического статуса юношей и девушек с использованием метода корреляционного анализа Спирмена позволило установить средние и сильные по силе связи между антропометрическими параметрами и компонентным составом тела. Силы корреляционных связей между обхватными размерами и компонентами сомы отличались в зависимости от пола обследуемых и были сильными у юношей, у девушек отмечались средние по силе корреляционные связи. Габаритные размеры (длина и масса тела) юношей и девушек имели сходные по силе корреляционные связи между собой, как и корреляционные связи между поперечными размерами и компонентным составом тела.

Таким образом, метод корреляционного анализа Спирмена в изучении соматического статуса лиц юношеского возраста помогает выявлять наличия статистической зависимости между исследуемыми признаками, что позволяет использовать его в практике доказательной медицины для всей генеральной совокупности.

Список литературы

- Деревцова С.Н. Соматометрические особенности пропорциональности телосложения мужского населения города Красноярска // Сибирский медицинский журнал [Томск]. 2010. Т. 5, № 4-1. С. 141-147.
- 2. Деревцова С.Н. Габаритные размеры и компонентный состав тела студентов города Красноярска (лонгитюдное псевдопанельное исследование) / С.Н. Деревцова, А.А. Романенко // Теоретические и прикладные вопросы науки и образования : сб. науч. тр. по материалам Международной науч.-практ. конференции. Тамбов : ООО «Консалтинговая компания Юком», 2015. Ч. 9. С. 44-46.
- 3. Кошелева Н.Н. Корреляционный анализ и его применение для подсчета ранговой корреляции Спирмена // Актуальные проблемы гуманитарных и естественных наук. 2012. Note 5. C. 23-26.
- 4. Кучеренко В.З. Применение методов статистического анализа. ГЕОТАР-Мед, 2004. 186 с.
- 5. Реброва О.Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ STATISTICA. М.: МедиаСфера, 2002. 312 с.

Рецензенты:

Горбунов Н.С. д.м.н., профессор, зав. кафедрой Красноярского государственного медицинского университета имени профессора В.Ф. Войно-Ясенецкого, г. Красноярск;

Залевский А.А. д.м.н., профессор Красноярского государственного медицинского университета имени профессора В.Ф. Войно-Ясенецкого, г. Красноярск.