УДК 616.611-002-053.2:616.94-002.7:615.273.53-08(043.3)

РАСПРЕДЕЛЕНИЕ ТРОМБОГЕННЫХ АЛЛЕЛЬНЫХ ПОЛИМОРФИЗМОВ У ДЕТЕЙ С ОСТРЫМ ГЛОМЕРУЛОНЕФРИТОМ

Махова Е.Г., Выходцева Г.И.

ГБОУ ВПО «Алтайский государственный медицинский университет» Минздрава России (656038, г. Барнаул, пр. Ленина 40), e-mail: mahovaeg@mail.ru

Проведен анализ распространённости генетических полиморфизмов тромбофилии у детей с острыми гломерулонефритами с нефритическим синдромом и нефротическим синдромом. Показана значимость присутствия отдельных полиморфизмов в популяции для развития острого гломерулонефрита. Исследование установило, что при остром гломерулонефрите с нефротическим синдромом гетерозиготный полиморфный вариант 677 СТ гена МТНFR выявлялся чаще, чем в группе контроля. Гетерозиготный полиморфизм 66 АG гена МТRR чаще встречается у пациентов с нефротическим и нефритическим синдромом чем в контрольной группе. Проведенное исследование установило, что у детей с острым гломерулонефритом частота минорного варианта Т 677 гена МТНFR встречается чаще, чем у здоровых детей. Определена высокая частота носительства гетерозиготных генотипов 677 СТ гена МТНFR и 66 АG гена МТRR в группе детей с гломерулонефритом, и наличие данных вариантов генов является предиктором неблагоприятного исхода заболевания.

Ключевые слова: педиатрия, гломерулонефрит, тромбогенные полиморфизмы

OCCURRENCE OF TROMBOGENNY ALLELIC POLYMORPHISMS AT CHILDREN WITH SHARP GLOMERULONEFRIT

Makhova E.G., Vykhodtseva G.I.

GBOU VPO "Altai State Medical University" of the Russian Ministry of Health (656038, Barnaul, Lenin Ave. 40) e-mail: mahovaeg@mail.ru

The analysis of prevalence of polymorphisms of hereditary thrombophilia at children with an acute glomerulonephritis with a nephritic syndrome and a nephrotic syndrome is carried out. The importance of presence of separate polymorphisms at population for development of an acute glomerulonephritis is shown. Research established that, at an acute glomerulonephritis with a nephrotic syndrome the heterozygotic polymorphic option of 677 ST of a gene of MTHFR was taped more often than in group of control. A heterozygotic polymorphism 66 AG genes of MTRR meets at patients with a nephrotic and nephritic syndrome than in control group more often. The conducted research established that at children the frequency of minor option T 677 of a gene of MTHFR meets an acute glomerulonephritis more often than at healthy children. High frequency of a carriage of heterozygotic genotypes of 677 ST of a gene of MTHFR and 66 AG genes of MTRR in group of children with a glomerulonephritis is determined, and existence of these options of genes is a disease failure predictor.

Keywords: the pediatrics, glomerulonefrit, trombogenny polymorphisms

В последние годы неуклонно возрастает интерес к изучению различных форм сосудистой патологии почек. По современным представлениям, нарушения в системе гемостаза по значимости мало уступают иммунному патологическому процессу в развитии нефритов. От характера и выраженности локальной и системной внутрисосудистой гиперкоагуляции, во многом зависят активность нефрита и скорость прогрессирования нефросклероза [1,2,4,5,6]. Тромбоз у детей с генетически обусловленными тромбофилиями в большинстве случаев возникает при воздействии дополнительных факторов риска. Но и пациенты с гетерозиготными формами мутации нуждаются в профилактической анитромботической терапии. К настоящему времени сложилось представление о тромбозе у

детей как о мультифакторной патологии, что определяет его значение в качестве мультидисциплинарной проблемы, привлекающей внимание специалистов различного профиля [3,7]. Наиболее значимым среди наследственных механизмов, повышающих риск тромбозов, является наличие тромбогенных полиморфизмов [9]. Среди последних выделяют мутации G1691A в гене V фактора свертывания (Лейденская мутация), мутация G20210A в гене протромбина, мутацию C677T в гене метилентетрагидрофолатредуктазы (МТНFR). К настоящему времени выявлено более ста мутаций. Как правило, для возникновения тромбоза необходима не только генетическая предрасположенность – носительство тромбогенных аллельных полиморфизмов, но и наличие пусковых факторов, к которым относят катетеризацию сосудов, генерализованные инфекции и многое другое, в том числе воспалительный процесс при нефропатиях [8,10]. В настоящее время доказана связь тромбофилии и тромбоза вен, но имеются лишь единичные данные касающиеся связи наследственной тромбофилии и поражения почек [3,7,8,9].

Цель исследования: установить распределение тромбогенных аллельных полиморфизмов у детей с острым гломерулонефритом.

Материал и методы исследования

В качестве материала для проведения молекулярно-генетического исследования на носительство полиморфных вариантов генов системы гемостаза и генов фолатного цикла использованы образцы ДНК 31 пациента (22 мальчиков и 9 девочек) в возрасте 2-15 лет, находящихся на стационарном лечении в Алтайской краевой клинической детской больницы г. Барнаула с диагнозом острый гломерулонефрит с нефротическим и нефритическим синдромами.

Определение аллельных вариантов генов осуществлялось лаборатории молекулярной генетики Алтайского краевого диагностического центра (г. Барнаул). В основе анализа лежал метод полимеразной цепной реакции в режиме реального времени (Real-Time PCR) с использованием конкурирующих TagMan зондов. Проведено генетическое исследование шести протромботических полиморфных маркёров генов-кандидатов: фактора II протромбина (G20210A); фактора V Лейден (Arg506Gln); фактора VII свертывания крови (Arg353Gln); фактора XIII свертывания крови (Val134Leu); фибриногена G(-455)A; ингибитора активатора плазминогена PAI-1 4G(-675)5G и четырех полиморфных вариантов ассоциированных c нарушениями фолатного метилентетрагидрофолатредуктазы - (MTHFR Ala223Val, C677T, rs1801133 и MTHFR E429A, A1298C, rs1801131), B_{12} -зависимой метионин-синтазы – (MTR Asp919Gly, A2756G, rs1805087) и метионин-синтазы редуктазы – (MTRR Ile22Met, A66G, rs1801394).

Для суждения о нормальном распределении в популяции генотипов генов системы гемостаза и генов фолатного цикла обследовано 115 здоровых детей (контрольная группа) со сходными демографическими характеристиками.

Статистическая обработка результатов исследования проводилась с помощью пакета программ "STATIstica for Windows 5.0" (STATSoft). Для проверки гипотезы о нормальном распределении использовали критерий Шапиро—Уилка. Попарное сравнение частот аллелей и генотипических групп в разных популяциях проводили с помощью двустороннего точного критерия Фишера (ТКФ) и критерия Пирсона. Соответствие распределения генотипических частот равновесию Харди-Вайнберга проверяли посредством критерия χ^2 , используя при этом онлайн калькулятор (http://www.oege.org/software/hardy-weiberg.shtml). Различия сравниваемых величин считали статистически значимыми при p<0,05.

Результаты исследования и их обсуждение

Гены-кандидаты предрасположенности к повышенному тромбообразованию в дебюте острого гломерулонефрита (ОГН) были исследованы у 22 (71,0%) мальчиков и 9 (29,0%) девочек, при этом отмечено достоверно значимое преобладание мальчиков (p=0,002) по отношению к девочкам при данной патологии.

В исследованной выборке детей с ОГН не было обнаружено гетерозиготных и гомозиготных (минорных аллелей) полиморфных вариантов гена FII G20210A и гена FV G1691A свертывающей системы крови, что не позволило включить данные генотипы в статистическую обработку и провести соответствующие расчеты.

В ходе исследования пациентов с острым гломерулонефритом были рассчитаны частоты аллелей изученных полиморфных вариантов генов системы гемостаза и фолатного цикла (табл. 1). При сравнении распределения частоты аллелей генов факторов свертывания крови у больных гломерулонефритом и контрольной группы, статистически значимых различий выявить не удалось (p>0,05). Однако, результаты генотипирования генов фолатного цикла показали, что частота минорного аллеля T 677 гена MTHFR у больных с острым гломерулонефритом статистически значимо больше, чем в группе контроля (p=0,026). По данным исследования M. Fodinger и соавт. [98], установлено, что носительство мутантного аллеля T 677 гена MTHFR у больных с гломерулонефритом сопряжено с высоким темпом утраты функционирующих нефронов и повышением риска развития почечной недостаточности.

Таблица 1

Распределение частот аллелей генов системы гемостаза (тромбогенных полиморфизмов) и фолатного цикла у детей с острым гломерулонефритом

Локус	Аллели	Группа детей	Группа контроля	p
		с ОГН (здоровые дети)		
		(%)	(%)	
FGB	G	22 (78,6)	60 (78,9)	1,000
G(-455)A	A	6 (21,4)	16 (21,1)	1,000
FVII	G	25 (89,3)	65 (90,3)	1,000
G10976A	A	3 (10,7)	7 (9,7)	1,000
FXIII	G	20 (76,8)	79 (76,0)	1,000
G226A	A	8 (28,6)	25 (24,0)	0,764
<i>PAI-1 4G</i>	5G	33 (53,2)	94 (40,9)	0,106
(-675)5G	4G	29 (46,8)	136 (59,1)	0,379
MTHFR	C	39 (62,9)	171 (74,4)	0,344
C677T	T	23 (37,1)	59 (25,6)	0,026
MTHFR	A	18 (64,3)	73 (70,2)	0,780
A1298C	C	10 (35,7)	31 (29,8)	0,541
MTR	A	22 (78,6)	73 (81,1)	1,000
A2756G	G	6 (21,4)	17 (18,9)	0,762
MTRR	A	16 (57,1)	44 (44,0)	1,000
A66G	G	5 (42,9)	56 (56,0)	<0,001

Статистика: p – точный критерий Фишера (ТКФ); в скобках - %.

Интересно, что частота минорного аллеля G 66 гена MTRR определялась достоверно чаще в группе контроля (p<0,001) по сравнению с больными ОГН. Выявленные изменения можно объяснить данными Л.А. Строзенко и соавт., что в популяции здоровых подростков г. Барнаула наблюдается высокий процент гомозиготного генотипа 66 GG (41,8%) и частоты аллеля G 66 гена MTRR (56,9%), что дает основание предположить адаптивное преимущество полиморфизма A66G гена MTRR в процессе эволюции или возможный «эффект основателя». По остальным частотам аллелей в исследованных полиморфных вариантах генов факторов свертывания крови и фолатного метаболизма статистически значимых различий не наблюдалось.

Распределение частот аллелей и генотипов в изученных генах факторов свертывания крови и генов фолатного метаболизма у детей проверено на соответствие равновесию Харди-Вайнберга (табл. 2).

 Таблица 2

 Распределение полиморфных вариантов генов факторов свертывания крови и генов системы фолатного цикла у детей с ОГН

Локус	Генотип	N.O. %	N.E. %	χ2 d.f.=1	Частота аллеля	Ho±S.E. He±S.E.
FGB	GG	64,3	61,7	0,321	G=0,79	Ho=0,286± 0,121
G(-455)A	GA	28,6	33,7	p=0.571	A=0.79	$H0=0.280\pm0.121$ $He=0.337\pm0.126$
(n=14)	AA	7,1	4,6	<i>p</i> =0,371	A-0,21	He−0,337±0,120
FVII	GG	78,6	79,7	0,202	G=0.89	Ho=0,214±0,111
G10976A	GA	21,4	19,1	p=0.653	A=0,11	$H0=0,214\pm0,111$ $He=0,191\pm0,105$
(n=14)	AA	0	1,2	p-0.033	A-0,11	110-0,191±0,103
FXIII	GG	57,1	51,0	0,126	G=0,71	$Ho=0.286 \pm 0.121$

G226A	GA	28,6	40,8	p=0,262	A=0,29	$He=0,408 \pm 0,131$
(n=14)	AA	14,3	8,2			
PAI-1 4G	5G/5G	32,3	28,3	0.772	50 0.52	II- 0.410 - 0.000
(-675)5G	4G/5G	41,9	49,8	0,772 $p=0,380$	5G=0,53 4G=0,47	Ho=0,419±0,089 He=0,498±0,090
(n=31)	4G/4G	25,8	21,9	<i>p</i> =0,380	40-0,47	110-0,470-0,070
MTHFR	CC	32,3	39,6	3,042	C=0,63	Ho=0,613±0,087
C677T	CT	61,3	46,7	p=0.081	T=0.37	He=0,467±0,090
(n=31)	TT	6,4	13,8	<i>p</i> =0,081	1-0,57	116-0,407-0,090
MTHFR	AA	35,7	45,9	0,836	A=0.64	Ho=0,572±0,132
A1298C	AC	57,2	49,5	p=0.360	C=0.36	He=0,495±0,134
(n=14)	CC	7,1	12,8	<i>p</i> =0,300	C=0,30	116-0,495±0,154
MTR	AA	57,2	61,7	1,041	A=0.79	Ho=0,428±0,132
A2756G	AG	42,8	33,7	p=0.307	G=0,77	He=0,337±0,126
(n=14)	GG	0	4,6	<i>p</i> =0,307	0=0,21	110-0,337±0,120
MTRR	AA	21,4	32,6	2,941	A=0,57	Ho=0,715±0,121
A66G	AG	71,5	49,0	p=0.0864	G=0,43	$H0=0,713\pm0,121$ $He=0,490\pm0,134$
(n=14)	GG	7,1	18,4	p=0,0004	U=0, 4 3	110-0,470±0,134

Примечание. N.O. - наблюдаемые частоты генотипов; N.E. - ожидаемые частоты генотипов; критерий χ^2 оценка соответствия равновесию Харди-Вайнберга; число степеней свободы; Ho \pm S.E. и He \pm S.E. - соответственно наблюдаемая и ожидаемая гетерозиготность с ошибкой.

Обнаружено, что распределение частот генотипов генов факторов свертывания крови и генов фолатного метаболизма соответствует равновесию Харди-Вайнберга.

Как видно из таблицы 2, наблюдаемое распределение генотипов протромботических генов согласуется с ожидаемыми частотами распределения. Высокий уровень ожидаемой гетерозиготности по полиморфным вариантам генов факторов свертывания крови был определен нами для трех генов: G(-455)A гена FGB (0,337); G226A гена FXIII (0,408); 4G(-675)5G гена PAI-1 (0,498). В том числе, выявлен высокий уровень теоретической гетерозиготности по полиморфизмам генов фолатного метаболизма (от 0,467 до 0,490).

Анализ частоты встречаемости тромбогенных аллельных полиморфизмов у пациентов с ОГН показал (табл. 3) отсутствие достоверно значимых различий в распределении генов системы гемостаза у больных и детей контрольной группы (p>0,05). Однако, в группе детей с ОГН гетерозиготный вариант 677 CT гена MTHFR и гетерозиготный вариант 66 AG гена MTRR достигали уровня статистической значимости (p=0,007) по сравнению с контрольной группой. Вместе с тем, гомозиготный вариант (мажорный аллель) 677 CC гена MTHFR и гомозиготный вариант (минорный аллель) 66 GG гена MTRR значимо чаще определялись в группе здоровых детей (p=0,015).

 Таблица 3

 Распределение частот генотипов генов системы гемостаза и генов фолатного цикла у детей с ОГН

		Группа детей с ОГН	Группа контроля	
Ген	Генотип	(%)	(здоровые дети)	p
			(%)	•
FGB	(-455) <i>GG</i>	9 (64,3)	23 (60,5)	1,000
	(-455) <i>GA</i>	4 (28,6)	14 (36,8)	0,746
FGB	(-455) AA	1 (7,1)	1 (2,6)	1,000
		n=14	n=38	
	10976 <i>GG</i>	11 (78,6)	29 (80,6)	1,000
FVII	10976 <i>GA</i>	3 (21,4)	7 (19,4)	1,000
F V II	10976 AA	0	0	-
		n=14	n=36	
	226 GG	8 (51,7)	30 (57,7)	1,000
FXIII	226 <i>GA</i>	4 (28,6)	19 (36,5)	0,755
ΓΛΙΙΙ	226 AA	2 (14,3)	3 (5,8)	0,576
		n=14	n=52	
	(-675) 5G5G	10 (32,3)	20 (17,4)	0,082
PAI-1	(-675) 4G5G	13 (41,9)	54 (47,0)	0,687
I AI-I	(-675) 4G4G	8 (25,8)	41 (35,6)	0,393
		n=31	n=115	
	677 CC	10 (32,3)	66 (57,4)	0,015
MTHFR	677 CT	19 (61,3)	39 (33,9)	0,007
WIIIII	677 TT	2 (6,4)	10 (8,7)	0,743
		n=31	n=115	
	1298 AA	5 (35,7)	24 (46,1)	0,555
MTHFR	1298 AC	8 (57,2)	25 (48,1)	0,764
MIHIK	1298 <i>CC</i>	1 (7,1)	3 (5,8)	1,000
		n=14	n=52	
	2756 AA	8 (57,2)	30 (66,7)	0,538
MTR	2756 AG	6 (42,8)	13 (28,9)	0,514
MIK	2756 <i>GG</i>	0	2 (4,4)	1,000
		n=14	n=45	
	66 AA	3 (21,4)	15 (30,0)	0,739
MTRR	66 AG	10 (71,5)	14 (28,0)	0,005
	66 <i>GG</i>	1 (7,1)	21 (42,0)	0,023
		n=14	n=50	

Статистика: p – точный критерий Фишера ($TK\Phi$); в скобках - %

Большой интерес представляло изучение распределения тромбогенных аллельных полиморфизмов у детей ОГН с нефритическим и нефротическим синдромами. Исследование позволило установить, что при ОГН с нефротическим синдромом гетерозиготный полиморфный вариант 677 CT гена MTHFR выявлялся достоверно чаще, чем в группе контроля (60,0% против 33,9% контрольной группы, (p<0,05)). Напротив, гомозиготный вариант (частый аллель) 677 CC гена MTHFR с большей частотой определялся в группе контроля (57,4% против 35,0% детей с ОГН нефротическим синдромом, (p<0,05)). Следует отметить, что при ОГН с нефритическим синдромом и у детей контрольной группы статистически значимой разницы в распределении гетерозиготного полиморфизма 677 CT гена MTHFR не обнаружено. Интересно, что гетерозиготный полиморфизм 66 AG гена MTRR с достоверной частотой зафиксирован у пациентов с нефротическим и нефритическим синдромом по сравнению с контрольной группой (p<0,05)). В распределении полиморфных вариантов генов системы гемостаза при ОГН с нефротическим синдромом достоверных различий с группой здоровых детей не было выявлено. Вместе с тем, показано, что

гомозиготный вариант (частый аллель) (-675) 5G/5G гена PAI-1 значимо чаще выявлен в группе пациентов с ОГН нефротическим синдромом (p<0,05) по сравнению с контролем (40,0% против 17,4% контрольной группы, (p<0,05)).

Заключение. Таким образом, проведенное исследование позволяет сделать вывод о том, что у детей с ОГН частота минорного аллеля *Т* 677 гена *МТНFR* встречается с большей частотой, чем среди здоровых лиц. Установлена высокая частота носительства гетерозиготных генотипов 677 *СТ* гена *МТНFR* и 66 *АG* гена *МТRR* в группе больных детей, вероятно, наличие данных полиморфных вариантов генов можно рассматривать в качестве предикторов неблагоприятного исхода заболевания. При этом выявлен высокий уровень ожидаемой гетерозиготности по полиморфным вариантам генов фолатного цикла.

Список литературы

- 1. Баркаган З.С., Момот А.П. Диагностики и контролируемая терапия нарушений гемостаза. М.: «Ньюдиамед АО», 2001 296 с.
- 2. Игнатова М.С., Коровина Н.А. Диагностика и лечение нефропатий у детей: Руководство для врачей. – М.: ГЭОТАР-Медиа, 2007. – С. 91-142.
- 3. Козловская Н.Л., Боброва Л.А. Генетическая тромбофилия и почки. // Клиническая нефрология. 2009. №.3. С. 23-32.
- 4. Мовчан Е.А., Тов Н.Л., Лоскутова С.Н., Чупрова А.В. Роль системы гемостаза в прогрессировании острого гломерулонефрита. Тер. арх. 2001; 6: 41-43.
- 5. Момот А.П. Принципы и алгоритмы клинико-лабораторной диагностики нарушений гемостаза. М., 2005 104 с.
- 6. Папаян А.В., Савенкова Н.Д. Клиническая нефрология детского возраста: Руководство для врачей. – СПб.: СОТИС, 1997. – 718 с.
- 7. Подчерняееа К.С., Меграбян М.Ф. et al. Принципы антитромботической терапии у детей. // Лечащий врач. 2006. N2.7. С. 52-56.
- 8. Строзенко Л.А. Распределение генов фолатного цикла в популяции подростков г. Барнаула Алтайского края /Л.А. Строзенко, В.В. Гордеев, Ю.Ф. Лобанов, А.П. Момот, Е.Н. Воронина // Мать и Дитя в Кузбассе. − 2015. № 1 (60). − С. 29-34.
- 9. Чугунова О.Л., Козловкая Н.Л., Шумихина А.И., Гуревич А.И. Проблема наследсвенной тромбофилии в практике детского нефролога. // Педиатрия. 2012. Т. 91, № 6. С. 34-40.
- 10. Fodinger, M. Mutation (677 C to T) in the methyltetrahydrofolate reductase gene aggravates hyperhomocysteinemia in hemodialysis patients / M. Fodinger, C. Mannhalter, G. Wolfl et al. // Kidney International. 1997. Vol. 52. P. 517-523.

Рецензенты:

Лобанов Ю.Ф., д.м.н., профессор, заведующий кафедрой педиатрии №2 Алтайского государственного медицинского университета Министерства здравоохранения Российской Федерации, г. Барнаул;

Клименов Л.Н., д.м.н., профессор кафедры педиатрии №2 Алтайского государственного медицинского университета Министерства здравоохранения Российской Федерации, г. Барнаул.