АНАЛИЗ НАИБОЛЕЕ ЗНАЧИМЫХ ПАРАМЕТРОВ И ФАКТОРОВ РАДИОТЕРАПИИ ВНУТРИМОЗГОВЫХ СУПРАТЕНТОРИАЛЬНЫХ ИНФИЛЬТРАТИВНЫХ ГЛИОМ НИЗКОЙ СТЕПЕНИ ЗЛОКАЧЕСТВЕННОСТИ

Милюков С. М., Чибисов С. М., Меладзе З. А.

ФГАОУ ВО «Российский университет дружбы народов» Министерства образования и науки Российской Федерации, г. Москва, Россия, e-mail: docsemi@yandex.ru

Ретроспективный анализ был проведен на основе клинического материала, собранного с 2003 по 2014 год в радиотерапевтической клинике ФГБУ «РНЦРР» МЗ РФ (РНЦРР). Всего в исследование было включено 52 пациента. Всем пациентам на первом этапе лечения была выполнена хирургическая операция или стереотаксическая биопсия. В дальнейшем все пациенты прошли курс дистанционной лучевой терапии. Следует отметить, что некоторым пациентам также проводилась химиотерапия. Проведена оценка показателя общей кумулятивной болезни специфической выживаемости методом Каплана - Майера с помощью программного обеспечения IBM SPSS Statistics. Достоверных статистических различий при анализе общей болезнь-специфической выживаемости по уровню суммарной очаговой дозы и времени до начала радиотерапии получено не было. Режим фракционирования с разовой очаговой дозой 2 Гр показал преимущество по сравнению с режимом гипофракционирования (разовая очаговая доза 3 Гр). Также статистически достоверные различия получены по показателю общей болезнь-специфической выживаемости при анализе степени прецизионности радиотерапии и количества фракций за курс радиотерапии. Современные программы радиотерапии с режимом стандартного фракционирования разовой очаговой дозой 1,8-2 Гр, ритмом облучения 5 дней в неделю ежедневно, одной фракцией радиотерапии в день, суммарной очаговой дозой 45-54Гр за курс лечения являются в настоящее время оптимальными. Режим гипофракционирования с разовой очаговой дозой ЗГр при лечении пациентов с внутримозговыми супратенториальными инфильтративными глиомами низкой степени злокачественности показал меньшую эффективность, чем режим стандартного фракционирования.

Ключевые слова: инфильтративные глиомы головного мозга низкой степени злокачественности (WHO Grade II), параметры и факторы радиотерапии, общая болезнь-специфическая выживаемость.

ANALYSIS OF THE MOST RELEVANT PARAMETERS AND FACTORS OF RADIOTHERAPY OF SUPRATENTORIAL INFILTRATIVE INTRACEREBRAL GLIOMAS LOW-GRADE

Milyukov S. M., Chibisov S. M., Meladze S. A.

Peoples' Friendship University of Russia, Moscow, Russia, e-mail: docsemi@yandex.ru

Objectives: Analysis of the most important parameters and factors of radiotherapy of the supratentorial infiltrative low-grade gliomas. (LGG). Materials and methods: 52 patients with morphologically proven low grade cerebral gliomas participated in our study. In 25 patients was found grade II, diffuse astrocytoma – 35 (67 %), oligoastrocytoma – 7 (14 %), oligodendroglioma – 10 (19 %). We analyzed the cumulative overall survival using the Kaplan – Meier analysis. Results: According to our research, 2 Gy dose per fraction, \geq 30 fractions and conformal radiotherapy improve the cumulative overall survival. Time period before radiotherapy following surgery and total dose of radiotherapy had no effect on the outcome of LGG treatment. Conclusion: Standard radiation therapy (2 Gy dose per fraction, total dose 45–54 Gy and > 54 Gy) improve the cumulative overall survival. Hypofractionated radiotherapy regimen (3 Gy dose per fraction, total dose 45–54 Gy and > 54Gy) decrease the cumulative overall survival.

Keywords: infiltrative low-grade cerebral gliomas (LGG) (WHO Grade II), parameters and factors of radiotherapy, the cumulative overall survival.

Внутричерепные инфильтративные глиомы у взрослых составляют менее 2 % в структуре солидных опухолей различной локализации [8] и около 50 % от всех злокачественных опухолей головного мозга [5]. Согласно опубликованным в 2014 г. первым результатам «Российского многоцентрового исследования по эпидемиологии

злокачественных глиом» в распределении по морфологической структуре глиальных опухолей преобладала глиобластома (69 %), в то время как распределение глиальных опухоли 2-й степени злокачественности (WHO Grade II) было следующим: диффузная астроцитома – 10,4 %, олигодендроглиома – 2,7 %, олигоастроцитома – 0,2 % [4]. Необходимо отметить, что после проведенного лечения глиальных опухолей развиваются рецидивы практически у всех пациентов в сроки, зависящие от гистологического типа опухоли [5].

В настоящее время в современных стандартах лечения для опухолей глиального ряда высокой степени злокачественности радиотерапия (РТ) является обязательным компонентом комплексного лечения [3, 10], а для внутричерепных инфильтративных глиом низкой степени злокачественности (ГНСЗ) необходимость проведения радиотерапии определяется принадлежностью к прогностической группе и радикальностью хирургического удаления опухолевого образования [3, 9, 10]. При проведении радиотерапии рекомендуется использовать режим стандартного фракционирования с разовой очаговой дозой (РОД) 1,8-2 Гр ритмом облучения 5 дней в неделю ежедневно (2 дня перерыв) с подведением суммарной очаговой дозы (СОД) для глиом низкой степени злокачественности (WHO Grade II) 45–54Гр, для глиом высокой степени злокачественности (WHO Grade III) 54-60 Гр, а для глиобластомы (WHO Grade IV) не менее 60Гр [3, 10]. В то же время продолжаются исследования по поиску новых режимов фракционирования, которые могли бы повысить эффективность лечения и сократить сроки проведения радиотерапии. В научной литературе чаще встречаются исследования, посвященные исследованию различных режимов гипофракционирования [1, 2, 6] и гиперфракционирования [7], которые показывают эффективность, сопоставимую со стандартным режимом фракционирования. Важную роль при проведении различных режимов фракционирования играет расчет суммарных очаговых доз радиотерапии, которые являются количественным эквивалентом биологического действия ионизирующего излучения в клинической практике. Одна из таких методик расчетов СОД носит название модели ВДФ (время – доза – фракционирование). Данная концепция была создана путем математической интерпретации результатов клинических наблюдений и радиобиологических экспериментов. Формула расчета фактора ВДФ имеет следующий вид: $B Д \Phi = N \ d^{1,538} \ (T/N)^{-0,169} \ 10^{-3}$, где d – разовая доза облучения здорового органа (сГр), Т – длительность курса лечения (сутки), N – число фракций облучения. Предельное значение ВДФ составляет 100 единиц [2]. В последние годы в связи с усовершенствованием радиологического оборудования появилась возможность проводить конформную радиотерапию с формированием объема облучения точно по контуру опухоли, получать более гомогенное распределение дозы в мишени облучения, что обусловило

создание предпосылок для повышения эффективности лечения, минимизации побочных проявлений без эскалации суммарной очаговой дозы. При проведении облучения ГНСЗ рекомендуется использовать методики конформной радиотерапии [9].

Цель исследования. Разработка новых эффективных режимов фракционирования радиотерапии, улучшающих отдаленные и непосредственные результаты комбинированного и комплексного лечения внутримозговых супратенториальных инфильтративных глиом низкой степени злокачественности (WHO Grade II).

Материалы и методы

Ретроспективный анализ наиболее значимых параметров и факторов радиотерапии был проведен на основе клинического материала, собранного с 2003 по 2014 год в радиотерапевтической клинике ФГБУ «РНЦРР» МЗ РФ (РНЦРР). Всего в исследование было включено 52 пациента. Необходимо отметить, что у всех пациентов диагноз был морфологически подтвержден. При этом у 35 пациентов (67 %) была диагностирована диффузная астроцитома, у 10 (19 %) – олигодендроглиома и у 7 пациентов (14 %) – олигоастроцитома. В исследование включались только пациенты, у которых согласно морфологической классификации ВОЗ опухолей ЦНС 2007 г. степень злокачественности была WHO Grade II. Среди 52 пациентов было 23 женщины (44 %) и 29 мужчин (56 %), средний возраст которых составил 39,50 лет (стандартное отклонение +/-12,09), а медиана возраста 37,32 лет. Также у пациентов до начала лечения оценивались размеры и локализация опухоли, уровень неврологического дефицита и функциональное состояние учитывать В пациентов, что рекомендуется современных стандартах лечения внутримозговых супратенториальных инфильтративных ГЛИОМ низкой степени злокачественности. Принадлежность пациента к той или иной прогностической группе EORTC является ключевым при принятии решения о тактики лечения [3, 9]. В общей исследуемой группе пациентов к благоприятной прогностической группе отнесены 32 пациента (62 %), а к неблагоприятной группе прогноза 20 пациентов (38 %).

На первом этапе специального лечения 31 пациенту (60 %) было проведено хирургическое лечение в виде тотального удаления опухоли (12 пациентов, 23 %) или субтотальная ее резекция (19 пациентов, 37 %), а 21 пациенту (40 %) с целью верификации диагноза выполнена стереотаксическая биопсия опухоли (СТБ). В последующем всем пациентам проводилась адъювантная дистанционная радиотерапия с разовой очаговой дозой (РОД) 1,8Гр, 2Гр и 3Гр (облучение проводилось ежедневно в течение 5 дней, 2 дня перерыва), при этом суммарная очаговая доза (СОД) составила от 45Гр до 64Гр, и лишь у одного пациента СОД составила по результатам лечения 36Гр (расчет эквивалентной суммарной очаговой дозы радиотерапии проводился по модели ВДФ для режима

стандартного фракционирования РОД 2Гр с ритмом облучения 5 дней в неделю ежедневно). Следует заметить, что 44 пациента (85 %) прошли курс радиотерапии на 2 этапе комбинированного или комплексного лечения, а 8 пациентов (15 %), у которых на 1 этапе лечения была выполнена СТБ, прошли курс радиотерапии на 3 этапе комплексного лечения после химиотерапии. Объем облучения включал в себя зону послеоперационных изменений (при тотальном удалении опухоли), остаточную опухоль (если была проведена субтотальная резекция опухолевого образования) или первичную опухоль (при проведении на 1 этапе лечения СТБ), а также зону возможного субклинического распространения опухолевого процесса. Всем пациентам до начала лечения проводилось МРТ головного мозга в режимах T1, T1 с контрастом, T2 и FLAIR. Показанием для проведения радиотерапии пациентам с ГНСЗ являлось наличие одного из следующих критериев: отсутствие у пациента на первом этапе комплексного или комбинированного лечения хирургической операции, наличие у пациента остаточной опухоли после хирургического вмешательства, принадлежность пациента к неблагоприятной прогностической группе. В целом в рамках комплексного лечения 19 пациентам (37 %) из общей исследуемой группы проводилось химиолучевое лечение. При этом 10 пациентам химиотерапия была проведена на 2 этапе лечения, 9 пациентам – на 3 этапе лечения. Общими показаниями для проведения ХТ независимо от этапа комплексного лечения являлось наличие у пациентов остаточной опухоли или отсутствие хирургической операции в сочетании с принадлежностью пациентов к неблагоприятной прогностической группе. Проведение химиотерапии на 2 этапе лечения осуществлялось только пациентам, которым не была выполнена тотальная или субтотальная резекция опухоли, а также отмечалось наличие у них уровня Индекса Карновского 70 % и ниже. В данном исследовании у пациентов, получавших химиотерапию, было несколько различных схем лечения, а именно: PCV (Прокарбазин + Ломустин + Винкристин), Нидран (Нимустин) + Винкристин, Нидран (Нимустин) + Ломустин, Винкристин + Ломустин, Ломустин, Натулан (Прокарбазин), Мюстофоран (Фотемустин), Темозоломид, Темозоломид Темозоломид + Ломустин (количество курсов XT, сочетание Кармустин, последовательность схем XT у различных пациентов варьировало в зависимости от клинической ситуации, гистологии опухоли).

В настоящее время в информационной аналитическо-статистической базе кафедры онкологии и рентгенорадиологии РУДН интегрированы более 100 различных параметрических и непараметрических факторов на каждого пролеченного пациента. При расчете кумулятивной болезнь-специфической выживаемости для анализа результатов лечения применялся математический метод Каплан — Майера с использованием статистического критерия Log Rank (Mantel-Cox), а вычисление непосредственных

результатов выполнялось по вышеуказанному методу статистической обработке с помощью программного обеспечения IBM SPSS Statistics.

Результаты исследования

Рассмотрено значение наиболее важных параметров и факторов радиотерапии, оценка которых в то же время доступна в повседневной практике врачу радиотерапевту (или врачу радиационному онкологу). В исследование включены такие факторы и параметры РТ, как разовая очаговая доза (РОД), суммарная очаговая доза (СОД), количество фракций радиотерапии за курс лечения, прецизионность радиотерапии, время до начала проведения радиотерапии после хирургического вмешательства.

Общая выживаемость больных с ГНСЗ в зависимости от разовой очаговой дозы

В данном исследовании проведена оценка эффективности стандартного режима фракционирования (РОД 1,8-2Гр, ритм облучения 5 раз в неделю ежедневно) и режима гипофракционирования (РОД 3Гр, ритм облучения 5 раз в неделю). При этом было выделено несколько групп сравнения. Группы фракционирования с РОД 1,8Гр и 2Гр, РОД 3Гр, а также группа, в которой у пациентов проводилась РТ с РОД 2Гр и 3Гр за курс лечения (ритм облучения 5 фракций в неделю). Необходимо отметить, что во всех группах сравнения независимо от разовой очаговой дозы подводилась эквивалентная суммарная очаговая доза. Лучшие результаты показал режим стандартного фракционирования с РОД 1,8Гр и 2Гр, при котором отмечались наиболее высокие показатели 2-х летней и 5-ти летней общей болезньспецифической выживаемости (табл. 1). Полученные различия между группами сравнения болезнь-специфической ПО **уровню** показателя общей выживаемости оказались статистически достоверными.

 Таблица 1

 Показатели кумулятивной общей болезнь-специфической выживаемости по группам

 сравнения в зависимости от разовой очаговой дозы

Параметры РТ	N	2-х летняя ОВ (%)	5-ти летняя ОВ (%)	Среднее OB (95 % CI)	Медиана ОВ (95 % CI)	P
		. ,	, ,	, ,	,	
РОД						0,000
2Гр	28	100 %	96 %	5,56 лет (4,53–6,67)	4,89 лет (3,88–6,45)	
2-3Γp	15	67 %	59 %	4,38 лет (3,12–5,85)	3,98 лет (1,96–4,95)	
3Гр	9	44 %		1,65 лет (1,17-2,10)	1,64 лет (1,00-2,42)	

Общая выживаемость больных с ГНСЗ в зависимости от суммарной очаговой дозы

Согласно современным рекомендациям при проведении курса радикальной РТ у пациентов с ГНСЗ по итогам курса лечения СОД должна составлять 45–54Гр. В данном исследовании проведено сравнение группы пациентов с СОД 45–54Гр и группы пациентов, в которой отмечалась эскалация СОД (то есть СОД составила более 54Гр). Следует отметить, что показатели 2-х летней и 5-ти летней общей болезнь-специфической выживаемости статистически значимо между группами сравнения не различались (табл. 2).

 Таблица 2

 Показатели кумулятивной общей болезнь-специфической выживаемости по группам

 сравнения в зависимости от суммарной очаговой дозы

Параметры	N	2-х летняя	5-ти летняя	Среднее ОВ	Медиана ОВ	P
PT		OB (%)	OB (%)	(95 % CI)	(95 % CI)	
СОД						0,597
45-54Гр	15	80 %	80 %	4,00 лет	4,32 лет	
				(2,92–5,01)	(2,32–4,86)	
> 54Γp	36	80 %	69 %	4,63 лет	3,56 лет	
				(3,61–5,71)	(2,40–3,82)	

Общая выживаемость больных с ГНСЗ в зависимости от общего количества фракций за курс лечения

Все пациенты в зависимости от количества фракций за курс лечения были разделены на три группы. При этом отмечались статистически достоверные различия между группами сравнения показателей 2-х летней ОВ и 5-летней ОВ (табл. 3).

 Таблица 3

 Показатели кумулятивной общей болезнь-специфической выживаемости по группам

 сравнения в зависимости от количества фракций за курс радиотерапии.

Параметры	N	2-х летняя	5-ти летняя	Среднее ОВ	Медиана ОВ	P
PT		OB (%)	OB (%)	(95 % CI)	(95 % CI)	
Количество						0,001
фракций						
< 20	17	59 %	42 %	3,04 лет	2,41 лет	
				(1,96–4,18)	(1,46–3,55)	

20-29	21	86 %	80 %	4,00 лет	4,09 лет
				(3,20-4,97)	(2,40-4,65)
≥ 30	14	100 %	100 %	7,19 лет	7,02 лет
				(5,59–8,83)	(5,55–9,34)

Общая выживаемость больных с ГНСЗ в зависимости от прецизионности РТ

Проведено сравнение 2-х групп пациентов, получавших конвенциальную и конформную РТ. При этом показатель 2-х летней ОВ и 5-летней ОВ в группе с конвенциальной РТ был меньше по сравнению с группой конформной РТ. Различия оказались значимыми (табл. 4).

 Таблица 4

 Показатели кумулятивной общей болезнь-специфической выживаемости по группам

 сравнения в зависимости от прецизионности радиотерапии

Параметры РТ	N	2-х летняя ОВ (%)	5-ти летняя ОВ (%)	Среднее OB (95 % CI)	Медиана ОВ (95 % CI)	P
Прецизионность радиотерапии						0,042
Конвенциальная	36	72 %	65 %	3,90 лет (3,12–4,73)	3,35 лет (2,35–4,43)	
Конформная	16	100 %	93 %	5,98 лет (4,42–7,50)	5,55 лет (3,65–7,38)	

Общая выживаемость больных с ГНСЗ в зависимости от времени до начала РТ после хирургического вмешательства

Были выделены 3 группы сравнения, а именно: пациенты, у которых проведение курса РТ было начато до 4 недель включительно после хирургического вмешательства (тотальная или субтотальная резекция опухоли, СТБ), пациенты, проходившие РТ более чем, через 4 недели после хирургического вмешательства, и пациенты, у которых РТ была проведена на 3 этапе комплексного лечения после химиотерапии. Различия между группами сравнения по показателю 2-х летней ОВ и 5-летней ОВ оказались статистически незначимыми (табл. 5).

Таблина 5

Показатели кумулятивной общей болезнь-специфической выживаемости по группам сравнения в зависимости от времени до начала РТ после хирургического вмешательства

Факторы РТ	N	2-х летняя ОВ (%)	5-ти летняя ОВ (%)	Среднее OB (95 % CI)	Медиана ОВ (95 % CI)	Значение Р
Время до начала РТ						0,934
≤ 4 недель	10	79 %	79 %	4,72 лет (3,02-6,43)	4,84 лет (1,58–7,02)	
> 4 недель	34	79 %	71 %	4,35 лет (3,42–5,46)	3,44 лет (2,45–4,41)	
РТ проведена на 3 этапе лечения после XT	8	88 %	75 %	5,16 лет (3,45–6,60)	4,84 лет (3,24–6,88)	

Заключение

Результаты проведенного анализа различных параметров и факторов радиотерапии показали, что существующие программы РТ с режимом стандартного фракционирования РОД 1,8-2 Гр, ритмом облучения 5 дней в неделю ежедневно, одной фракцией радиотерапии в день, СОД 45-54Гр за курс лечения являются в настоящее время оптимальными. Время проведения РТ существенно не влияет на результаты лечения. При увеличении количества фракций за курс лечения при СОД-эквивалентных режимах РТ лучшие результаты были получены в группе с наибольшим количеством фракций (30 и более), что, по всей видимости, говорит о необходимости проведения радиотерапии в режиме гиперфракционирования для пациентов с ГНСЗ. Конформная РТ показала свою большую значимость по сравнению с конвенциальной. Тем не менее окончательные выводы о значимости того или иного параметра и фактора радиотерапии можно будет делать лишь после проведения многофакторного анализа.

Список литературы

- 1. Измайлов Т.Р., Паньшин Г.А., Даценко П.В. Выбор программ лучевой терапии при глиомах высокой степени злокачественности // Нейрохирургия. 2013. № 4. С. 26-32.
- 2. Измайлов Т.Р., Паньшин Г.А., Милюков С.М., Даценко П.В. Оценка эффективности лучевой терапии глиом высокой степени злокачественности на основе модели ВДФ (время доза фракционирование) // Вопросы онкологии. 2013. Т.59. № 5. С. 629-635.
- 3. Практические рекомендации по лекарственному лечению злокачественных опухолей (RUSCCO) / под редакцией В.М. Моисеенко. М.: Общество онкологов-химиотерапевтов,

2014. C. 48-74.

- 4. Смолин А.В., Бекяшев А.Х., Кобяков Г.Л. и др. Первые результаты Российского многоцентрового исследования по эпидемиологии злокачественных глиом. // Современная онкология. 2014; 02: 50-55.
- 5. Dhermain F, de Crevoisier R, Parker F, et all. Role of radiotherapy in recurrent gliomas. BullCancer. 2004 Nov;91(11):883-9 [ArticleinFrench].
- 6. Hadjipanayis CG, Kondziolka D, Flickinger JC et. al. The role of stereotactic radiosurgery for low-grade astrocytomas.// Neurosurg Focus. 2003 May 15;14(5):e15.
- 7. Jeremic B, Shibamoto Y, Grujicic D et. al. Hyperfractionated radiation therapy for incompletely resected supratentorial low-grade glioma. A phase II study // RadiotherOncol. 1998 Oct; 49(1):49-54.
- 8. Ohgaki H. Epidemiology of Brain Tumors / in: M. Verma (ed.), Methods of Molecular Biology, Cancer Epidemiology, Vol. 472. Humana Press 2009. P. 323-42.
- 9. Soffietti R, Baumert BG, Bello L et al. Guidelines on management of low-grade gliomas: report of an EFNS-EANO Task Force. Eur J Neurol 2010; 17: 1124-33.
- 10. Stupp G, Brada M, van den Bent MJ et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. // Ann Oncol. 2014 Sep; 25Suppl 3:P.93-101.

Рецензенты:

Шастун С.А., д.м.н., профессор кафедры физиологии РУДН, г. Москва; Сяткин С.П., д.м.н., профессор кафедры биохимии РУДН, г. Москва.