АНАЛИЗ СОДЕРЖАНИЯ ВИТАМИНОВ В КРОВИ И МОЧЕ У РАБОТНИКОВ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКОГО ПРЕДПРИЯТИЯ

Горбачев Д.О., Сучков В.В., Сазонова О.В., Гильмиярова Ф.Н., Гусякова О.А.

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Самара, e-mail: Dmitriy-426@rambler.ru

Проведено исследование обеспеченности витаминами 49 работников, обслуживающих ТЭЦ г. Самары. Оценивали содержание витаминов A, E, β-каротина и группы B (B₁, B₆, B₁₂) в плазме крови, а также уровень витамина C в моче. У большинства работников наблюдалось соответствие концентраций витаминов в плазме крови рекомендуемым нормативам за исключением витамина D₃ (холекальциферола). Анализируя содержание витамина C в моче и продуктов белкового обмена (мочевины и мочевой кислоты) в плазме крови, выявлена прямая зависимость между содержанием витамина C в моче и концентрацией мочевой кислоты в плазме крови, обратная – содержание витамина C в моче и концентрацией мочевины. Гиповитаминоз витамина C наблюдается у рабочих, у которых суточное потребление витамина C находилось в пределах доверительных границ до нормативной величины 90 мг/сут. Вероятная патология мочевыделительной системы наблюдается у исследуемых лиц с высоким содержанием витамина C в моче при одновременном сниженном поступлении его в организм с продуктами питания. По концентрации витамина E и уровню содержания общего холестерина в плазме крови наблюдалась положительная корреляционная связь (r = 0,665 при р < 0,001).

Ключевые слова: витамины, питание, витамин D₃, витамин A, витамин E, витамин C, β-каротин.

ANALYSIS OF THE VITAMIN CONTENT IN BLOOD AND URINE WORKERS OF FUEL AND ENERGY COMPANIES

Gorbachev D.O., Suchkov V.V., Sazonova O.V., Gilmiyarova F.N., Gusyakova O.A.

Samara State Medical University, Samara, e-mail: Dmitriy-426@rambler.ru

A study of security in vitamins 49 employees serving purposes of Samara. Evaluated vitamin content A, E, β -carotene and group B (B₁, B₆, B₁₂) in the blood plasma, and the level of vitamin C in urine. The majority of workers monitored by the respective concentrations of vitamins in the blood plasma of the recommended standards with the exception of vitamin D₃ (cholecalciferol). Analyzing the content of vitamin C in the urine and the products of protein metabolism (urea and uric acid) in the blood plasma, revealed a direct correlation between the content of vitamin C in the urine and the concentration of uric acid in blood plasma, reverse – the content of vitamin C in the urine and the concentration of urea. Vitamin C vitamin deficiencies observed in workers who have vitamin C daily intake is within the confidence bounds to the normative value of 90 mg/day. Possible pathology of the urinary system is observed in the studied individuals with a high content of vitamin C in the urine while reducing its entry into the body with food. As the concentration of vitamin E, and the level of total cholesterol in the blood plasma, there was a positive correlation (r = 0.665 with p < 0,001).

Keywords: vitamins, nutrition, vitamin D₃, vitamin A, vitamin E, vitamin C, β-carotene.

Население Российской Федерации, занятое на производствах, где условия труда не соответствуют санитарно-гигиеническим нормам, подвержено сочетанному влиянию неблагоприятных факторов производственной среды и трудового процесса [1, 3]. Организм работников не способен компенсировать все функциональные расстройства, связанные с перенапряжением отдельных органов и систем. По исследованиям ученых-гигиенистов, состояние здоровья рабочих усугубляется фактором недостаточности лечебно-профилактического питания (ЛПП), например, дефицит поступления или даже полное отсутствие витаминов, выполняющих антиоксидантную функцию, участвующих в биотрансформации ксенобиотиков и препятствующих появлению свободных радикалов в

клетках и тканях [3, 4]. Исходя из разнообразия вредных примесей, составляющих химический фактор, разработаны пять основных рационов ЛПП, включающих в себя нормативы потребления определенных витаминов и макронутриентов. Однако одного нормирования содержания витаминов в рационах недостаточно, так как необходимо еще учитывать факторы усвоения их организмом рабочего, а также концентрацию витаминов в плазме крови, позволяющую судить о включении их в биохимические реакции и физиологические процессы в органах и системах органов [5, 6]. Оценка экскреции водорастворимых витаминов почками также свидетельствует об уровне обеспеченности витаминами организма.

Цель исследования — оценка содержания в крови и моче витаминов у работников, занятых на вредных производствах и не получавших лечебно-профилактическое питание.

Материал и методы исследования

В качестве объекта с вредными условиями труда выбрано предприятие, обслуживающее ТЭЦ г. Самары. Всего обследовано 49 рабочих. Все работники дали письменное согласие на проведение исследования крови и мочи. Критериями включения в исследуемую группу являлись отсутствие заболеваний желудочно-кишечного тракта и назначения лечебно-диетического питания, а также отсутствие применения лечебнопрофилактического питания на производстве и добавления в рацион биологически активных веществ и витаминных препаратов.

Определяли содержание витаминов A и E, β -каротина в плазме крови с помощью высокоэффективной жидкостной хроматографии. Витамины B_{12} , B_9 и D_3 исследовали иммуноферментным методом. Витамин B_6 определяли микробиологическим способом. Обеспеченность организма витамином C оценивали по его величине концентрации в моче.

Параллельно с определением витаминов в плазме крови исследовали содержание биохимических показателей (мочевина, мочевая кислота, общий холестерин (ОХС), липопротеины низкой плотности (ЛПНП), триглицериды (ТГ), общий кальций и фосфор).

Статистическую обработку данных осуществляли с использованием пакета статистических программ Statistica 6.1 и Microsoft Excel 2010. Вариационные ряды данных группировали по половому признаку с последующим расчетом средней величины (M) и ошибки средней (m). Корреляционную зависимость выявляли по критерию ранговой корреляции Спирмена (r). Достоверными различия между показателями признавали при принятом уровне значимости p < 0.05.

Результаты и их обсуждение

На всех работников действовали неблагоприятные факторы производственной среды и трудового процесса. Основными негативными факторами являлись химический фактор

(оксид марганца, оксид хрома, соединения никеля, меди, цинка, ванадия и других металлов, а также оксиды азота, оксид углерода, озон, фторид водорода), неблагоприятный микроклимат, электромагнитное излучение и напряженность трудового процесса.

Результаты исследования витаминов в плазме крови представлены в таблице. У 45 работников наблюдалось соответствие концентраций витаминов в плазме крови рекомендуемым нормативам за исключением витамина D_3 (холекальциферола). Наблюдаемый дефицит витамина D_3 связан, прежде всего, с недостатком потребления 37 обследованными таких продуктов, как печень, рыба и рыбопродукты, яйца. Поскольку обследование проведено в зимний период, то сниженная концентрация витамина D_3 в плазме крови объясняется сезонными колебаниями инсоляции.

Проводя корреляционный анализ, мы выявили положительную зависимость между концентрацией витамина D_3 и содержанием кальция (r=0,21 при p<0,05), и отрицательную – между концентрацией витамина D_3 и содержанием фосфора (r=-0,14 при p<0,05). Известно, что фосфорно-кальциевый обмен без витамина D происходит очень медленно. Формирование гидроксиапатитов кальция при участии холекальциферола позволяет снизить риск развития остеопороза, что является актуальным для рабочих предпенсионного и пенсионного возраста. Мы выявили регрессионную зависимость (рис. 1), позволяющую определить ориентировочную концентрацию витамина D_3 в плазме крови.

Концентрации витаминов в плазме крови у обследованной группы рабочих

Витамин	Нормативные значения [1, 2]	Концентрация в плазме крови					Процент лиц со
		M ± m	Процентиль				сниженной обеспеченностью
			25-й	50-й (Ме)	75-й	Min – Max	витамином
Витамин А, мкг/дл	30 – 80	$45,7 \pm 1,8$	37,5	51,2	56,8	32,7 – 73,2	0
Витамин Е, мг/дл	0.8 - 1.5	$1,1 \pm 0,06$	0,92	1,2	1,3	0,45-2,26	17,0
Витамин Е/ОХС	≥ 2,22 мкг/мг	$5,67 \pm 0,16$	4,75	5,54	6,5	3,19 – 8,26	0
	\geq 2,25 мкмоль/моль	$4,74 \pm 0,83$	4,65	4,93	5,35	2,32-7,48	0
Витамин Е /ТГ, мкг/мг	≥ 8,0	$12,4 \pm 0,8$	7,5	11,4	16,1	2,4-24,5	26,3
Витамин Е /(ОХС+ТГ)	\geq 0,8 мкг/мг	$3,59 \pm 0,12$	2,93	3,65	4,10	1,90 - 6,90	0
	≥ 1,11 ммоль/моль	$3,57 \pm 0,16$	3,33	4,15	4,7	2,43-6,56	0
β-Каротин, мкг/дл	20 - 40	$6,4 \pm 0,5$	3,2	5,6	9,2	0,7 – 34,4	94,3
Витамин D ₃ , нг/мл	30 – 100	$28,5 \pm 1,6$	24,5	28,8	383	13,6 – 57,4	63,1
Витамин В6, мкг/л	5 – 18	$22,3 \pm 1,3$	18,3	22,8	35,3	7,6 – 68,2	0
Витамин В ₉ , нг/мл	4,6 – 18,7	$6,8 \pm 0,4$	3,8	5,4	8,6	3,1 – 18,4	10,4
Витамин В ₁₂ , пг/мл	191 – 663	385 ± 13	286	384	456,4	175 - 821	2,4
Витамин С в моче, ммоль/л	> 0,6	$0,5 \pm 0,17$	0,0	0,6	0,6	0,0-2,8	44,3

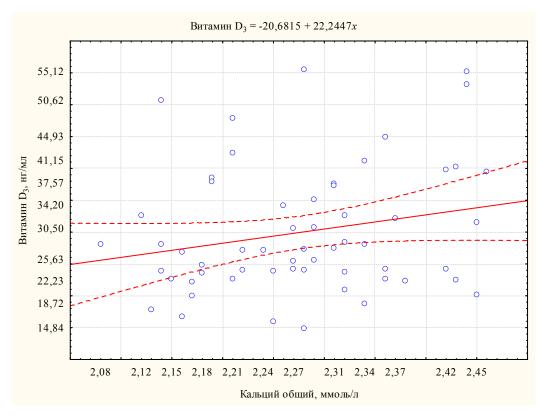


Рис. 1. Регрессионная зависимость содержания витамина D_3 от концентрации общего кальция в плазме крови

Анализируя содержание витамина С в моче и содержание продуктов белкового обмена (мочевины и мочевой кислоты) в плазме крови, мы выявили прямую зависимость между содержанием витамина С в моче и концентрации мочевой кислоты в плазме крови, обратную - между содержанием витамина С и концентрации мочевины (рис. 2 и 3). Этот процесс объясняется сниженным функционированием мочевыделительной системы или наличием возможной патологии почек и белкового обмена. Малое поступление витамина С в организм человека может быть обусловлено неправильной кулинарной обработкой продуктов питания: чрезмерное термическое воздействие, длительное хранение продуктов с нарушением температурного режима. Нашим исследованием не подтвердилась корреляционная зависимость между суточным поступлением витамина С с пищей и его содержанием в моче (r = 0.08 при p < 0.05). На рисунке 4 мы видим, что витамин С отсутствовал в продуктах питания у лиц, у которых содержание витамина С в моче равно нулю. Также гиповитаминоз витамина С наблюдается у рабочих, у которых суточное потребление витамина С находилось в пределах доверительных границ до нормативной величины 90 мг/сут. Вероятная патология мочевыделительной системы наблюдается у исследуемых лиц с высоким содержанием витамина С в моче при одновременном сниженном поступлении его в организм с продуктами питания.

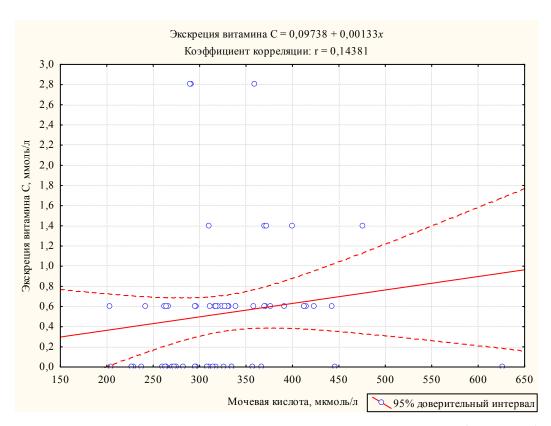


Рис. 2. Регрессионная зависимость содержания витамина С в моче (экскреции) от концентрации мочевой кислоты в плазме крови

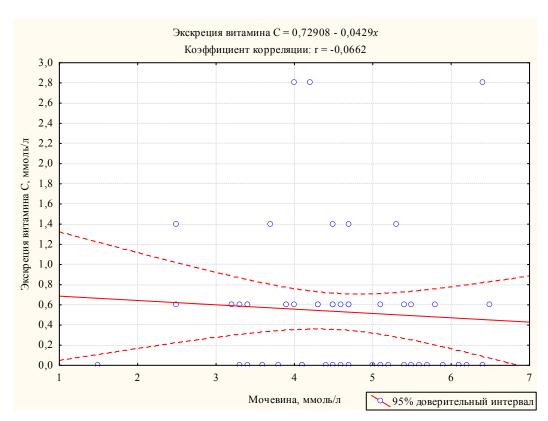


Рис. 3. Регрессионная зависимость содержания витамина С в моче (экскреции) от концентрации мочевины в плазме крови



Рис. 4. Регрессионная зависимость содержания витамина С в моче (экскреции) от его суточного поступления в организм с продуктами питания

Содержание в крови остальных витаминов у обследованных лиц находилось в пределах нормативных величин. При этом в отличие от витамина А концентрация β -каротина в плазме крови у 24 обследованных лиц была снижена относительно нормы в 2,3 раза, у 14 обследованных – в 4 раза, а у 11 обследованных – в 10 раз. Витамином Е обеспечен 41 работник. По концентрации витамина Е и уровню содержания общего холестерина наблюдалась положительная корреляционная связь (r = 0,589 при p < 0,001). Также сильная связь подтвердилась и по триглицеридам (r = 0,496 при p < 0,001), и по липопротеинам низкой плотности (r = 0,425 при p < 0,001). Это связано с участием липидов в процессе метаболизма витамина Е. Содержание витаминов B_6 , B_9 и B_{12} в плазме крови соответствовало границам нормативных величин у большинства обследованных.

Заключение

Таким образом, адекватная обеспеченность всеми шестью витаминами была только у 3 рабочих. Наибольший дефицит наблюдался по витаминам D_3 и C, а также β -каротину. Сочетанный недостаток двух витаминов имели 19 обследованных, трех — 11 обследованных, четырех — 8 обследованных. Выявленные корреляционные связи подтвердили важность участия витаминов в биохимических реакциях и физиологических процессах. В качестве практических рекомендаций нужно выделить лечебно-профилактическое питание,

самостоятельную коррекцию суточного рациона с участием врача-диетолога, плановую диспансеризацию и санаторно-курортное лечение.

Список литературы

- 1. Витаминный статус и минеральная плотность костной ткани у больных с ожирением и сердечно-сосудистой патологией [Текст] / А.А. Светикова, О.А. Вржесинская, В.М. Коденцова, Н.А. Бекетова, О.Г. Переверзева, А.В. Погожева, Б.С. Каганов // Вопросы питания. 2008. Т. 77, № 3. С. 39-44.
- 2. Коденцова В.М. Изменение обеспеченности витаминами взрослого населения Российской Федерации за период 1987–2009 гг. (к 40-летию лаборатории витаминов и минеральных веществ НИИ питания РАМН) [Текст] / В.М. Коденцова, О.А. Вржесинская, В.Б. Спиричев // Вопросы питания. 2010. Т. 79, № 3. С. 68-72.
- 3. Коденцова В.М. Обеспеченность витаминами населения России [Текст] / В.М. Коденцова // Переработка молока. 2015. № 5. С. 47-51.
- 4. Тутельян В.А. О нормах физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации [Текст] / В.А. Тутельян // Вопросы питания. -2009. Т. 78, № 1. С. 4-15.
- 5. Dror D.K., Allen L.H. Vitamin E deficiency in developing countries // Food and Nutrition Bulletin. 2011. Vol. 32, N 2. P. 124-143.
- 6. Traber M.G. Vitamin E Inadequacy in Humans: Causes and Consequences // Adv. Nutr. 2014 Sep; 5(5): P. 503-514.